LRFNet: A deep learning model for the assessment of liver reserve function based on Child‐Pugh score and CT image

医学 人工智能 肝功能 规范化(社会学) 深度学习 肝癌 计算机科学 放射科 肝细胞癌 模式识别(心理学) 机器学习 内科学 人类学 社会学
作者
Zhiwei Huang,Guo Zhang,Jiong Liu,Mengping Huang,Lisha Zhong,Jiwu Shu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:223: 106993-106993 被引量:2
标识
DOI:10.1016/j.cmpb.2022.106993
摘要

Liver reserve function should be accurately evaluated in patients with hepatic cellular cancer before surgery to evaluate the degree of liver tolerance to surgical methods. Meanwhile, liver reserve function is also an important indicator for disease analysis and prognosis of patients. Child-Pugh score is the most widely used liver reserve function evaluation and scoring system. However, this method also has many shortcomings such as poor accuracy and subjective factors. To achieve comprehensive evaluation of liver reserve function, we developed a deep learning model to fuse bimodal features of Child-Pugh score and computed tomography (CT) image.1022 enhanced abdomen CT images of 121 patients with hepatocellular carcinoma and impaired liver reserve function were retrospectively collected. Firstly, CT images were pre-processed by de-noising, data amplification and normalization. Then, new branches were added between the dense blocks of the DenseNet structure, and the center clipping operation was introduced to obtain a lightweight deep learning model liver reserve function network (LRFNet) with rich liver scale features. LRFNet extracted depth features related to liver reserve function from CT images. Finally, the extracted features are input into a deep learning classifier composed of fully connected layers to classify CT images into Child-Pugh A, B and C. Precision, Specificity, Sensitivity, and Area Under Curve are used to evaluate the performance of the model.The AUC by our LRFNet model based on CT image for Child-Pugh A, B and C classification of liver reserve function was 0.834, 0.649 and 0.876, respectively, and with an average AUC of 0.774, which was better than the traditional clinical subjective Child-Pugh classification method.Deep learning model based on CT images can accurately classify Child-Pugh grade of liver reserve function in hepatocellular carcinoma patients, provide a comprehensive method for clinicians to assess liver reserve function before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荼白完成签到 ,获得积分10
2秒前
记忆完成签到,获得积分10
6秒前
7秒前
zhang完成签到,获得积分10
8秒前
工藤新一完成签到 ,获得积分10
8秒前
阡陌完成签到,获得积分10
9秒前
10秒前
doubleshake发布了新的文献求助10
11秒前
石斑鱼完成签到,获得积分10
19秒前
归诚完成签到,获得积分10
20秒前
17852573662完成签到,获得积分10
24秒前
夹心小狗完成签到,获得积分10
25秒前
伍秋望完成签到,获得积分10
27秒前
loey完成签到,获得积分10
28秒前
淡然觅海完成签到 ,获得积分10
28秒前
苏苏完成签到 ,获得积分10
36秒前
chen完成签到 ,获得积分10
42秒前
彦子完成签到 ,获得积分10
43秒前
波波完成签到 ,获得积分10
46秒前
积极的中蓝完成签到 ,获得积分10
49秒前
平常的仙人掌完成签到,获得积分10
49秒前
奕泽完成签到 ,获得积分10
55秒前
Yang完成签到,获得积分10
59秒前
爆米花应助科研通管家采纳,获得10
59秒前
59秒前
凌晨五点的完成签到,获得积分10
1分钟前
yirenli完成签到,获得积分10
1分钟前
yoyocici1505完成签到,获得积分10
1分钟前
跋扈完成签到,获得积分10
1分钟前
斯蒂芬库外完成签到,获得积分10
1分钟前
不配.完成签到,获得积分0
1分钟前
无限的千凝完成签到 ,获得积分10
1分钟前
liyiren完成签到,获得积分10
1分钟前
陌子完成签到 ,获得积分10
1分钟前
我的白起是国服完成签到 ,获得积分10
1分钟前
YORLAN完成签到 ,获得积分10
1分钟前
长命百岁完成签到 ,获得积分10
1分钟前
丰富的绮山完成签到,获得积分10
1分钟前
00完成签到 ,获得积分10
1分钟前
邓娅琴完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137058
求助须知:如何正确求助?哪些是违规求助? 2788032
关于积分的说明 7784326
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010