Enhancing rating prediction for recommendation by metric learning with gray relational analysis

计算机科学 数据挖掘 推荐系统 公制(单位) 机器学习 相似性(几何) 人工智能 RSS 灰色(单位)
作者
Jiangmei Chen,Wende Zhang,Qishan Zhang
出处
期刊:Grey systems [Emerald Publishing Limited]
卷期号:ahead-of-print (ahead-of-print)
标识
DOI:10.1108/gs-05-2021-0073
摘要

Purpose The purpose of the paper is to improve the rating prediction accuracy in recommender systems (RSs) by metric learning (ML) method. The similarity metric of user and item is calculated with gray relational analysis. Design/methodology/approach First, the potential features of users and items are captured by exploiting ML, such that the rating prediction can be performed. In metric space, the user and item positions can be learned by training their embedding vectors. Second, instead of the traditional distance measurements, the gray relational analysis is employed in the evaluation of the position similarity between user and item, because the latter can reduce the impact of data sparsity and further explore the rating data correlation. On the basis of the above improvements, a new rating prediction algorithm is proposed. Experiments are implemented to validate the effectiveness of the algorithm. Findings The novel algorithm is evaluated by the extensive experiments on two real-world datasets. Experimental results demonstrate that the proposed model achieves remarkable performance on the rating prediction task. Practical implications The rating prediction algorithm is adopted to predict the users' preference, and then, it provides personalized recommendations for users. In fact, this method can expand to the field of classification and provide potentials for this domain. Originality/value The algorithm can uncover the finer grained preference by ML. Furthermore, the similarity can be measured using gray relational analysis, which can mitigate the limitation of data sparsity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高的蓝天完成签到 ,获得积分10
1秒前
科目三应助xiaxianong采纳,获得10
2秒前
左右完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
2秒前
危机的夏寒完成签到,获得积分10
2秒前
3秒前
3秒前
Youth完成签到,获得积分10
3秒前
英姑应助Rubywang采纳,获得10
3秒前
3秒前
lxy完成签到,获得积分10
4秒前
kk完成签到,获得积分10
4秒前
4秒前
爱你呃不可能完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
7秒前
勤恳天川完成签到 ,获得积分10
7秒前
香蕉觅云应助自转无风采纳,获得10
7秒前
Ann发布了新的文献求助20
7秒前
zxy完成签到,获得积分10
7秒前
HP完成签到,获得积分10
7秒前
来可追完成签到,获得积分10
7秒前
sword完成签到,获得积分10
7秒前
YBOH发布了新的文献求助10
8秒前
科研狂魔发布了新的文献求助10
8秒前
英姑应助研友_V8Qmr8采纳,获得10
8秒前
zf完成签到,获得积分10
9秒前
满意代亦完成签到,获得积分10
9秒前
蒋50完成签到,获得积分10
9秒前
乐开欣完成签到,获得积分10
9秒前
无花果应助kathy采纳,获得10
10秒前
arisfield完成签到,获得积分10
10秒前
MAIDANG完成签到,获得积分10
10秒前
11秒前
王小小完成签到,获得积分10
11秒前
KingYugene完成签到,获得积分10
11秒前
11秒前
ginseng发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953650
求助须知:如何正确求助?哪些是违规求助? 3499409
关于积分的说明 11095552
捐赠科研通 3229987
什么是DOI,文献DOI怎么找? 1785841
邀请新用户注册赠送积分活动 869592
科研通“疑难数据库(出版商)”最低求助积分说明 801479