Enhancing rating prediction for recommendation by metric learning with gray relational analysis

计算机科学 数据挖掘 推荐系统 公制(单位) 机器学习 相似性(几何) 人工智能 RSS 灰色(单位)
作者
Jiangmei Chen,Wende Zhang,Qishan Zhang
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:ahead-of-print (ahead-of-print)
标识
DOI:10.1108/gs-05-2021-0073
摘要

Purpose The purpose of the paper is to improve the rating prediction accuracy in recommender systems (RSs) by metric learning (ML) method. The similarity metric of user and item is calculated with gray relational analysis. Design/methodology/approach First, the potential features of users and items are captured by exploiting ML, such that the rating prediction can be performed. In metric space, the user and item positions can be learned by training their embedding vectors. Second, instead of the traditional distance measurements, the gray relational analysis is employed in the evaluation of the position similarity between user and item, because the latter can reduce the impact of data sparsity and further explore the rating data correlation. On the basis of the above improvements, a new rating prediction algorithm is proposed. Experiments are implemented to validate the effectiveness of the algorithm. Findings The novel algorithm is evaluated by the extensive experiments on two real-world datasets. Experimental results demonstrate that the proposed model achieves remarkable performance on the rating prediction task. Practical implications The rating prediction algorithm is adopted to predict the users' preference, and then, it provides personalized recommendations for users. In fact, this method can expand to the field of classification and provide potentials for this domain. Originality/value The algorithm can uncover the finer grained preference by ML. Furthermore, the similarity can be measured using gray relational analysis, which can mitigate the limitation of data sparsity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歇儿哒哒发布了新的文献求助10
刚刚
1秒前
惜墨应助kelvin采纳,获得10
2秒前
和和和发布了新的文献求助10
2秒前
科研通AI2S应助lololopopo采纳,获得10
2秒前
活力寒梅完成签到,获得积分10
2秒前
3秒前
yue完成签到,获得积分10
3秒前
英俊的铭应助yyuan采纳,获得10
4秒前
SciGPT应助傻子与白痴采纳,获得10
4秒前
IBMffff应助神无采纳,获得10
5秒前
温柔的钢铁侠完成签到,获得积分10
5秒前
7秒前
科研通AI2S应助LJL采纳,获得10
7秒前
JJ田叶发布了新的文献求助10
8秒前
义气小白菜完成签到 ,获得积分10
10秒前
11秒前
11秒前
CodeCraft应助四斤瓜采纳,获得10
11秒前
Tiako发布了新的文献求助10
12秒前
yoyo发布了新的文献求助10
12秒前
情怀应助yue采纳,获得10
12秒前
歇儿哒哒完成签到,获得积分10
14秒前
所有事情都上岸完成签到,获得积分10
14秒前
闪电侠完成签到 ,获得积分10
14秒前
Liu发布了新的文献求助10
15秒前
基尼胎没完成签到 ,获得积分10
15秒前
15秒前
16秒前
ZYYYY完成签到,获得积分10
16秒前
111111发布了新的文献求助10
17秒前
楠D发布了新的文献求助10
18秒前
思源应助科研小王采纳,获得10
18秒前
PSL发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
21秒前
iNk应助Tiako采纳,获得10
22秒前
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226