FAT-Net: Feature adaptive transformers for automated skin lesion segmentation

计算机科学 分割 人工智能 卷积神经网络 模式识别(心理学) 编码器 推论 特征(语言学) 变压器 图像分割 特征提取 操作系统 物理 哲学 量子力学 电压 语言学
作者
Huisi Wu,Shihuai Chen,Guilian Chen,Wei Wang,Baiying Lei,Zhenkun Wen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:76: 102327-102327 被引量:332
标识
DOI:10.1016/j.media.2021.102327
摘要

Skin lesion segmentation from dermoscopic image is essential for improving the quantitative analysis of melanoma. However, it is still a challenging task due to the large scale variations and irregular shapes of the skin lesions. In addition, the blurred lesion boundaries between the skin lesions and the surrounding tissues may also increase the probability of incorrect segmentation. Due to the inherent limitations of traditional convolutional neural networks (CNNs) in capturing global context information, traditional CNN-based methods usually cannot achieve a satisfactory segmentation performance. In this paper, we propose a novel feature adaptive transformer network based on the classical encoder-decoder architecture, named FAT-Net, which integrates an extra transformer branch to effectively capture long-range dependencies and global context information. Furthermore, we also employ a memory-efficient decoder and a feature adaptation module to enhance the feature fusion between the adjacent-level features by activating the effective channels and restraining the irrelevant background noise. We have performed extensive experiments to verify the effectiveness of our proposed method on four public skin lesion segmentation datasets, including the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. Ablation studies demonstrate the effectiveness of our feature adaptive transformers and memory-efficient strategies. Comparisons with state-of-the-art methods also verify the superiority of our proposed FAT-Net in terms of both accuracy and inference speed. The code is available at https://github.com/SZUcsh/FAT-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑暗系发布了新的文献求助10
1秒前
1秒前
Jasmine完成签到,获得积分10
2秒前
打打应助琉玥采纳,获得10
3秒前
阳光襄发布了新的文献求助10
3秒前
4秒前
小马甲应助忧郁的黄鼠狼采纳,获得10
4秒前
4秒前
传奇3应助被划分采纳,获得10
5秒前
风中断秋发布了新的文献求助10
5秒前
面条完成签到,获得积分10
5秒前
orixero应助彩色飞瑶采纳,获得10
6秒前
田様应助诚心的不斜采纳,获得10
6秒前
彭于晏应助Swuliu采纳,获得10
6秒前
6秒前
wangxin发布了新的文献求助10
6秒前
领导范儿应助smile采纳,获得10
7秒前
8秒前
ciqtaicang发布了新的文献求助10
8秒前
8秒前
8秒前
雪雪发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
谷粱发布了新的文献求助10
10秒前
文献无碍发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
wangxin完成签到,获得积分10
14秒前
小蘑菇应助撒西不理采纳,获得10
14秒前
科研通AI5应助bin采纳,获得10
14秒前
风中断秋完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
黑暗系发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126