Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells

催化作用 质子交换膜燃料电池 碳纤维 材料科学 铂金 化学工程 氧气 涂层 可逆氢电极 无机化学 化学 纳米技术 电极 电化学 复合材料 有机化学 工作电极 复合数 物理化学 工程类
作者
Shengwen Liu,Chenzhao Li,Michael J. Zachman,Yachao Zeng,Haoran Yu,Boyang Li,Maoyu Wang,Jonathan Braaten,Jiawei Liu,Harry M. Meyer,Marcos Lucero,A. Jeremy Kropf,E. Ercan,Qing Gong,Qiurong Shi,Zhenxing Feng,Hui Xu,Guofeng Wang,Deborah J. Myers,Jian Xie,David A. Cullen,Shawn Litster,Gang Wu
出处
期刊:Nature Energy [Springer Nature]
卷期号:7 (7): 652-663 被引量:449
标识
DOI:10.1038/s41560-022-01062-1
摘要

Nitrogen-coordinated single atom iron sites (FeN4) embedded in carbon (Fe–N–C) are the most active platinum group metal-free oxygen reduction catalysts for proton-exchange membrane fuel cells. However, current Fe–N–C catalysts lack sufficient long-term durability and are not yet viable for practical applications. Here we report a highly durable and active Fe–N–C catalyst synthesized using heat treatment with ammonia chloride followed by high-temperature deposition of a thin layer of nitrogen-doped carbon on the catalyst surface. We propose that catalyst stability is improved by converting defect-rich pyrrolic N-coordinated FeN4 sites into highly stable pyridinic N-coordinated FeN4 sites. The stability enhancement is demonstrated in membrane electrode assemblies using accelerated stress testing and a long-term steady-state test (>300 h at 0.67 V), approaching a typical Pt/C cathode (0.1 mgPt cm−2). The encouraging stability improvement represents a critical step in developing viable Fe–N–C catalysts to overcome the cost barriers of hydrogen fuel cells for numerous applications. Fe–N–C materials are promising oxygen reduction catalysts for proton-exchange membrane fuel cells but still lack sufficient long-term durability for practical applications. Here the authors fabricate an Fe–N–C material with a thin N–C layer on the surface, leading to a highly durable and active catalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lydy1993完成签到,获得积分10
刚刚
1秒前
滴滴哒哒完成签到 ,获得积分10
1秒前
SciGPT应助波波玛奇朵采纳,获得10
3秒前
戏言121完成签到,获得积分10
3秒前
迷人的映雁完成签到,获得积分10
4秒前
4秒前
美丽的之双完成签到,获得积分10
5秒前
阿会完成签到,获得积分10
5秒前
wqm完成签到,获得积分10
6秒前
戏言121发布了新的文献求助10
7秒前
7秒前
8秒前
优雅的流沙完成签到 ,获得积分10
9秒前
猫的海完成签到,获得积分10
9秒前
9秒前
Eason Liu完成签到,获得积分0
10秒前
Wendy1204完成签到,获得积分20
10秒前
Hello应助654采纳,获得10
10秒前
咩咩羊完成签到,获得积分10
10秒前
14秒前
lianqing完成签到,获得积分10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
15秒前
RC_Wang应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
hh应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得30
15秒前
15秒前
Leif应助科研通管家采纳,获得20
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824