Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment

易腐性 后悔 非参数统计 动态定价 背景(考古学) 计算机科学 参数统计 计量经济学 经济 运筹学 微观经济学 数学 业务 营销 统计 机器学习 古生物学 生物
作者
N. Bora Keskin,Yuexing Li,Jing‐Sheng Song
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (3): 1938-1958 被引量:47
标识
DOI:10.1287/mnsc.2021.4011
摘要

We consider a retailer that sells a perishable product, making joint pricing and inventory ordering decisions over a finite time horizon of T periods with lost sales. Exploring a real-life data set from a leading supermarket chain, we identify several distinctive challenges faced by such a retailer that have not been jointly studied in the literature: the retailer does not have perfect information on (1) the demand-price relationship, (2) the demand noise distribution, (3) the inventory perishability rate, and (4) how the demand-price relationship changes over time. Furthermore, the demand noise distribution is nonparametric for some products but parametric for others. To tackle these challenges, we design two types of data-driven pricing and ordering (DDPO) policies for the cases of nonparametric and parametric noise distributions. Measuring performance by regret, that is, the profit loss caused by not knowing (1)–(4), we prove that the T-period regret of our DDPO policies are in the order of [Formula: see text] and [Formula: see text] in the cases of nonparametric and parametric noise distributions, respectively. These are the best achievable growth rates of regret in these settings (up to logarithmic terms). Implementing our policies in the context of the aforementioned real-life data set, we show that our approach significantly outperforms the historical decisions made by the supermarket chain. Moreover, we characterize parameter regimes that quantify the relative significance of the changing environment and product perishability. Finally, we extend our model to allow for age-dependent perishability and demand censoring and modify our policies to address these issues. This paper was accepted by David Simchi-Levi, Management Science Special Section on Data-Driven Prescriptive Analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞飞鱼发布了新的文献求助10
刚刚
乐乐应助优美紫槐采纳,获得10
刚刚
1秒前
1秒前
1秒前
解文哲完成签到,获得积分10
1秒前
2秒前
549完成签到,获得积分10
2秒前
DQ发布了新的文献求助10
2秒前
张伟发布了新的文献求助10
2秒前
Lhh发布了新的文献求助10
3秒前
PH0225发布了新的文献求助10
4秒前
4秒前
无聊的成败完成签到,获得积分20
5秒前
6秒前
求文发布了新的文献求助10
6秒前
机灵柚子应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
优美紫槐应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
机灵柚子应助科研通管家采纳,获得10
7秒前
柏林寒冬应助科研通管家采纳,获得10
7秒前
颜林林发布了新的文献求助10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
打打应助科研通管家采纳,获得10
7秒前
nina发布了新的文献求助10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
尊敬冬萱完成签到 ,获得积分10
7秒前
天天发布了新的文献求助10
8秒前
d23完成签到 ,获得积分10
8秒前
Nikki发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605746
求助须知:如何正确求助?哪些是违规求助? 4690350
关于积分的说明 14863110
捐赠科研通 4702499
什么是DOI,文献DOI怎么找? 2542243
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142