Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment

易腐性 后悔 非参数统计 动态定价 背景(考古学) 计算机科学 参数统计 计量经济学 经济 运筹学 微观经济学 数学 业务 营销 统计 机器学习 古生物学 生物
作者
N. Bora Keskin,Yuexing Li,Jing‐Sheng Song
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (3): 1938-1958 被引量:47
标识
DOI:10.1287/mnsc.2021.4011
摘要

We consider a retailer that sells a perishable product, making joint pricing and inventory ordering decisions over a finite time horizon of T periods with lost sales. Exploring a real-life data set from a leading supermarket chain, we identify several distinctive challenges faced by such a retailer that have not been jointly studied in the literature: the retailer does not have perfect information on (1) the demand-price relationship, (2) the demand noise distribution, (3) the inventory perishability rate, and (4) how the demand-price relationship changes over time. Furthermore, the demand noise distribution is nonparametric for some products but parametric for others. To tackle these challenges, we design two types of data-driven pricing and ordering (DDPO) policies for the cases of nonparametric and parametric noise distributions. Measuring performance by regret, that is, the profit loss caused by not knowing (1)–(4), we prove that the T-period regret of our DDPO policies are in the order of [Formula: see text] and [Formula: see text] in the cases of nonparametric and parametric noise distributions, respectively. These are the best achievable growth rates of regret in these settings (up to logarithmic terms). Implementing our policies in the context of the aforementioned real-life data set, we show that our approach significantly outperforms the historical decisions made by the supermarket chain. Moreover, we characterize parameter regimes that quantify the relative significance of the changing environment and product perishability. Finally, we extend our model to allow for age-dependent perishability and demand censoring and modify our policies to address these issues. This paper was accepted by David Simchi-Levi, Management Science Special Section on Data-Driven Prescriptive Analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meng完成签到,获得积分10
刚刚
张掖完成签到,获得积分10
刚刚
Lucas应助kangkang采纳,获得10
1秒前
大晨完成签到,获得积分10
1秒前
哈哈哈haha发布了新的文献求助20
2秒前
cc发布了新的文献求助10
2秒前
Yolo发布了新的文献求助10
2秒前
2秒前
allenice完成签到,获得积分10
2秒前
3秒前
3秒前
音乐发布了新的文献求助10
3秒前
英姑应助科研通管家采纳,获得10
4秒前
华仔应助沙拉采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
Owen应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得30
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
Orange应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
香蕉觅云应助夏夏采纳,获得10
5秒前
英俊的铭应助夏夏采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
万能图书馆应助夏夏采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
科研通AI5应助夏夏采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
赘婿应助夏夏采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
cc应助夏夏采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
yun尘世应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762