Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment

易腐性 后悔 非参数统计 动态定价 背景(考古学) 计算机科学 参数统计 计量经济学 经济 运筹学 微观经济学 数学 业务 营销 统计 机器学习 古生物学 生物
作者
N. Bora Keskin,Yuexing Li,Jing‐Sheng Song
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (3): 1938-1958 被引量:47
标识
DOI:10.1287/mnsc.2021.4011
摘要

We consider a retailer that sells a perishable product, making joint pricing and inventory ordering decisions over a finite time horizon of T periods with lost sales. Exploring a real-life data set from a leading supermarket chain, we identify several distinctive challenges faced by such a retailer that have not been jointly studied in the literature: the retailer does not have perfect information on (1) the demand-price relationship, (2) the demand noise distribution, (3) the inventory perishability rate, and (4) how the demand-price relationship changes over time. Furthermore, the demand noise distribution is nonparametric for some products but parametric for others. To tackle these challenges, we design two types of data-driven pricing and ordering (DDPO) policies for the cases of nonparametric and parametric noise distributions. Measuring performance by regret, that is, the profit loss caused by not knowing (1)–(4), we prove that the T-period regret of our DDPO policies are in the order of [Formula: see text] and [Formula: see text] in the cases of nonparametric and parametric noise distributions, respectively. These are the best achievable growth rates of regret in these settings (up to logarithmic terms). Implementing our policies in the context of the aforementioned real-life data set, we show that our approach significantly outperforms the historical decisions made by the supermarket chain. Moreover, we characterize parameter regimes that quantify the relative significance of the changing environment and product perishability. Finally, we extend our model to allow for age-dependent perishability and demand censoring and modify our policies to address these issues. This paper was accepted by David Simchi-Levi, Management Science Special Section on Data-Driven Prescriptive Analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒完成签到,获得积分10
刚刚
从南到北发布了新的文献求助10
刚刚
LZQ应助zhangjiabin采纳,获得10
刚刚
香菜味钠片完成签到,获得积分10
刚刚
潇湘飞云完成签到,获得积分10
刚刚
刚刚
1秒前
haoyunlai完成签到,获得积分10
1秒前
可靠的南露给外向的小海豚的求助进行了留言
1秒前
Huang完成签到,获得积分10
1秒前
Able阿拉基完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
3秒前
4秒前
万能图书馆应助Z2WWS32采纳,获得10
4秒前
cai完成签到,获得积分10
4秒前
4秒前
seed85发布了新的文献求助200
4秒前
Allon完成签到,获得积分10
4秒前
Dominic7888完成签到,获得积分10
5秒前
学术老6完成签到,获得积分10
5秒前
345完成签到,获得积分10
5秒前
小蚂蚁发布了新的文献求助10
5秒前
6秒前
orixero应助务实火龙果采纳,获得10
6秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
6秒前
红绿蓝完成签到 ,获得积分10
6秒前
小白完成签到 ,获得积分10
6秒前
欣于所遇完成签到,获得积分10
7秒前
7秒前
7秒前
nqterysc发布了新的文献求助10
7秒前
有信心完成签到 ,获得积分10
7秒前
wad1314完成签到,获得积分10
7秒前
伶俐芷珊完成签到,获得积分10
7秒前
Hannah完成签到,获得积分10
8秒前
SICHEN完成签到,获得积分10
8秒前
小萌新完成签到,获得积分20
8秒前
听风完成签到,获得积分10
8秒前
听安完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968637
求助须知:如何正确求助?哪些是违规求助? 3513552
关于积分的说明 11168493
捐赠科研通 3248935
什么是DOI,文献DOI怎么找? 1794554
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804691