Utilizing the Relationship Between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization

多目标优化 水准点(测量) 数学优化 进化算法 帕累托原理 计算机科学 过程(计算) 人工智能 数学 大地测量学 操作系统 地理
作者
Jing Liang,Kangjia Qiao,Kunjie Yu,Boyang Qu,Caitong Yue,Wei-Feng Guo,Ling Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (6): 3873-3886 被引量:42
标识
DOI:10.1109/tcyb.2022.3163759
摘要

Constrained multiobjective optimization problems (CMOPs) involve multiple objectives to be optimized and various constraints to be satisfied, which challenges the evolutionary algorithms in balancing the objectives and constraints. This article attempts to explore and utilize the relationship between constrained Pareto front (CPF) and unconstrained Pareto front (UPF) to solve CMOPs. Especially, for a given CMOP, the evolutionary process is divided into the learning stage and the evolving stage. The purpose of the learning stage is to measure the relationship between CPF and UPF. To this end, we first create two populations and evolve them by specific learning strategies to approach the CPF and UPF, respectively. Then, the feasibility information and dominance relationship of the two populations are used to determine the relationship. Based on the learned relationship, specific evolving strategies are designed in the evolving stage to improve the utilization efficiency of objective information, so as to better solve this CMOP. By the above process, a new constrained multiobjective evolutionary algorithm (CMOEA) is presented. Comprehensive experimental results on 65 benchmark functions and ten real-world CMOPs show that the proposed method has a better or very competitive performance in comparison with several state-of-the-art CMOEAs. Moreover, this article demonstrates that using the relationship between CPF and UPF to guide the utilization of objective information is promising in solving CMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青青子衿发布了新的文献求助10
刚刚
1秒前
特等雪白渗透压仪完成签到,获得积分10
2秒前
jy完成签到,获得积分10
3秒前
Dong完成签到 ,获得积分10
5秒前
今晚打母驴应助害羞的裘采纳,获得30
6秒前
双黄应助南风不竞采纳,获得10
6秒前
7秒前
tramp应助八戒的梦想采纳,获得10
8秒前
siso发布了新的文献求助10
8秒前
呆呆发布了新的文献求助10
8秒前
8秒前
Acetonitrile应助开朗的柜子采纳,获得10
9秒前
10秒前
平淡访冬完成签到 ,获得积分10
10秒前
浅枫完成签到 ,获得积分10
10秒前
10秒前
蓝调发布了新的文献求助10
12秒前
14秒前
15秒前
chenting完成签到 ,获得积分10
15秒前
Liuyuting1008发布了新的文献求助10
15秒前
爆米花应助Z.one采纳,获得10
18秒前
爱雪的猫完成签到,获得积分10
18秒前
乐乐应助California采纳,获得10
20秒前
Orange应助libra采纳,获得10
22秒前
星辰大海应助JUSTDOIT采纳,获得10
23秒前
23秒前
24秒前
24秒前
24秒前
han完成签到,获得积分10
25秒前
26秒前
Drwang发布了新的文献求助10
27秒前
NexusExplorer应助中午吃什么采纳,获得10
27秒前
XYN1发布了新的文献求助10
27秒前
研友_VZG7GZ应助wsgdhz采纳,获得10
27秒前
28秒前
orixero应助羊羊羊采纳,获得10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260841
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318187
捐赠科研通 2571677
什么是DOI,文献DOI怎么找? 1397150
科研通“疑难数据库(出版商)”最低求助积分说明 653663
邀请新用户注册赠送积分活动 632213