多目标优化
水准点(测量)
数学优化
进化算法
帕累托原理
计算机科学
过程(计算)
人工智能
数学
大地测量学
操作系统
地理
作者
Jing Liang,Kangjia Qiao,Kunjie Yu,Boyang Qu,Caitong Yue,Wei-Feng Guo,Ling Wang
出处
期刊:IEEE transactions on cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2023-06-01
卷期号:53 (6): 3873-3886
被引量:42
标识
DOI:10.1109/tcyb.2022.3163759
摘要
Constrained multiobjective optimization problems (CMOPs) involve multiple objectives to be optimized and various constraints to be satisfied, which challenges the evolutionary algorithms in balancing the objectives and constraints. This article attempts to explore and utilize the relationship between constrained Pareto front (CPF) and unconstrained Pareto front (UPF) to solve CMOPs. Especially, for a given CMOP, the evolutionary process is divided into the learning stage and the evolving stage. The purpose of the learning stage is to measure the relationship between CPF and UPF. To this end, we first create two populations and evolve them by specific learning strategies to approach the CPF and UPF, respectively. Then, the feasibility information and dominance relationship of the two populations are used to determine the relationship. Based on the learned relationship, specific evolving strategies are designed in the evolving stage to improve the utilization efficiency of objective information, so as to better solve this CMOP. By the above process, a new constrained multiobjective evolutionary algorithm (CMOEA) is presented. Comprehensive experimental results on 65 benchmark functions and ten real-world CMOPs show that the proposed method has a better or very competitive performance in comparison with several state-of-the-art CMOEAs. Moreover, this article demonstrates that using the relationship between CPF and UPF to guide the utilization of objective information is promising in solving CMOPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI