Utilizing the Relationship Between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization

多目标优化 水准点(测量) 数学优化 进化算法 帕累托原理 计算机科学 过程(计算) 人工智能 数学 大地测量学 操作系统 地理
作者
Jing Liang,Kangjia Qiao,Kunjie Yu,Boyang Qu,Caitong Yue,Wei-Feng Guo,Ling Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (6): 3873-3886 被引量:116
标识
DOI:10.1109/tcyb.2022.3163759
摘要

Constrained multiobjective optimization problems (CMOPs) involve multiple objectives to be optimized and various constraints to be satisfied, which challenges the evolutionary algorithms in balancing the objectives and constraints. This article attempts to explore and utilize the relationship between constrained Pareto front (CPF) and unconstrained Pareto front (UPF) to solve CMOPs. Especially, for a given CMOP, the evolutionary process is divided into the learning stage and the evolving stage. The purpose of the learning stage is to measure the relationship between CPF and UPF. To this end, we first create two populations and evolve them by specific learning strategies to approach the CPF and UPF, respectively. Then, the feasibility information and dominance relationship of the two populations are used to determine the relationship. Based on the learned relationship, specific evolving strategies are designed in the evolving stage to improve the utilization efficiency of objective information, so as to better solve this CMOP. By the above process, a new constrained multiobjective evolutionary algorithm (CMOEA) is presented. Comprehensive experimental results on 65 benchmark functions and ten real-world CMOPs show that the proposed method has a better or very competitive performance in comparison with several state-of-the-art CMOEAs. Moreover, this article demonstrates that using the relationship between CPF and UPF to guide the utilization of objective information is promising in solving CMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
XieMeina发布了新的文献求助10
3秒前
Akim应助开心的西瓜采纳,获得10
4秒前
小二郎应助信仰采纳,获得10
6秒前
6秒前
hdy331完成签到,获得积分10
6秒前
364zdk发布了新的文献求助10
7秒前
7秒前
小蘑菇应助奋斗的幼荷采纳,获得10
7秒前
在水一方应助个性的汲采纳,获得10
8秒前
12秒前
13秒前
14秒前
14秒前
Lili完成签到,获得积分10
14秒前
粗心的蒙蒙完成签到,获得积分10
14秒前
冷咖啡离开了杯垫完成签到,获得积分10
15秒前
深情安青应助JKL采纳,获得10
17秒前
禅花游鱼发布了新的文献求助10
18秒前
wanwan完成签到,获得积分10
18秒前
18秒前
18秒前
默默的一笑完成签到,获得积分10
18秒前
20秒前
golden完成签到,获得积分10
22秒前
22秒前
Owen应助稀奇采纳,获得10
23秒前
23秒前
brookqu发布了新的文献求助10
23秒前
小鱼完成签到,获得积分10
24秒前
科目三应助失眠南蕾采纳,获得10
25秒前
大模型应助禅花游鱼采纳,获得20
26秒前
26秒前
虞访云完成签到,获得积分10
29秒前
痴情的博超应助nenoaowu采纳,获得30
29秒前
邓佳鑫Alan应助nenoaowu采纳,获得10
29秒前
李健的小迷弟应助nenoaowu采纳,获得10
30秒前
JKL发布了新的文献求助10
30秒前
Qiao应助Duke采纳,获得10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382