Utilizing the Relationship Between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization

多目标优化 水准点(测量) 数学优化 进化算法 帕累托原理 计算机科学 过程(计算) 人工智能 数学 大地测量学 操作系统 地理
作者
Jing Liang,Kangjia Qiao,Kunjie Yu,Boyang Qu,Caitong Yue,Wei-Feng Guo,Ling Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (6): 3873-3886 被引量:130
标识
DOI:10.1109/tcyb.2022.3163759
摘要

Constrained multiobjective optimization problems (CMOPs) involve multiple objectives to be optimized and various constraints to be satisfied, which challenges the evolutionary algorithms in balancing the objectives and constraints. This article attempts to explore and utilize the relationship between constrained Pareto front (CPF) and unconstrained Pareto front (UPF) to solve CMOPs. Especially, for a given CMOP, the evolutionary process is divided into the learning stage and the evolving stage. The purpose of the learning stage is to measure the relationship between CPF and UPF. To this end, we first create two populations and evolve them by specific learning strategies to approach the CPF and UPF, respectively. Then, the feasibility information and dominance relationship of the two populations are used to determine the relationship. Based on the learned relationship, specific evolving strategies are designed in the evolving stage to improve the utilization efficiency of objective information, so as to better solve this CMOP. By the above process, a new constrained multiobjective evolutionary algorithm (CMOEA) is presented. Comprehensive experimental results on 65 benchmark functions and ten real-world CMOPs show that the proposed method has a better or very competitive performance in comparison with several state-of-the-art CMOEAs. Moreover, this article demonstrates that using the relationship between CPF and UPF to guide the utilization of objective information is promising in solving CMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒水绿完成签到 ,获得积分10
刚刚
嘻嘻嘻发布了新的文献求助10
刚刚
削皮柚子发布了新的文献求助10
1秒前
俭朴蜜蜂发布了新的文献求助200
2秒前
依夏祭完成签到,获得积分10
3秒前
cc完成签到 ,获得积分10
3秒前
3秒前
天天快乐应助粤十一采纳,获得10
4秒前
YiJin_Wang发布了新的文献求助10
5秒前
乐情发布了新的文献求助20
5秒前
8秒前
wxs发布了新的文献求助10
8秒前
可爱的函函应助酷酷巧蟹采纳,获得10
9秒前
9秒前
blablawindy发布了新的文献求助10
10秒前
科研小白发布了新的文献求助10
11秒前
李爱国应助嘿咻采纳,获得10
11秒前
11秒前
11秒前
Steven发布了新的文献求助10
12秒前
12秒前
迟有朝完成签到,获得积分10
14秒前
崔佳慧发布了新的文献求助10
14秒前
粤十一完成签到,获得积分10
15秒前
16秒前
angelinazh完成签到,获得积分10
16秒前
粤十一发布了新的文献求助10
17秒前
17秒前
桐桐应助pura卷卷采纳,获得10
17秒前
18秒前
无花果应助端庄的如花采纳,获得10
19秒前
Hello应助咸鱼咸采纳,获得10
20秒前
张铁柱完成签到,获得积分10
20秒前
天天快乐应助崔佳慧采纳,获得10
20秒前
卢卢完成签到,获得积分10
22秒前
foreverchoi发布了新的文献求助10
22秒前
酷酷巧蟹发布了新的文献求助10
22秒前
22秒前
所所应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206