阴极
材料科学
电解质
阳极
硫化物
电极
化学工程
储能
快离子导体
纳米技术
冶金
电气工程
化学
物理
工程类
物理化学
功率(物理)
量子力学
作者
Wei-xiao Ji,Xiaoxiao Zhang,Dong Zheng,He Huang,Tristan H. Lambert,Deyang Qu
标识
DOI:10.1002/adfm.202202919
摘要
Abstract The combination of organic electrode materials and sulfide electrolytes is expected to enable the development of all‐solid‐state organic batteries featuring high energy density, safety, and sustainability. Here, thiuram hexasulfide is first reported as a low‐cost and high‐capacity cathode material for solid‐state organic batteries based on sulfide electrolytes. Notably, a capacity of ≈600 mA h g −1 is delivered and the capacity retention is 80.8% after 500 cycles. An electrochemically reversible change of the cathode interface is revealed upon cycling. The full cell displays an oscillating stress change of up to 0.6 MPa during cycling, predominated by the anode side. The energy density is 1140 Wh kg −1 at the material level and 376 Wh kg −1 at the electrode level, which are among the best‐reported organic cathodes to date. A high areal capacity of 10.4 mA h cm −2 is reached with a high mass loading cathode. A dry‐film approach is further explored to manufacture sheet‐type cells. The free‐standing Li 6 PS 5 Cl film with a thickness of only 48 µm demonstrates an ultralow areal resistance of 3.9 Ω cm 2 , which significantly boosts the cell‐level energy density and reduces the cell internal resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI