纳米团簇
超原子
材料科学
双金属片
十二面体
金属
纳米技术
结晶学
电子结构
化学
计算化学
冶金
作者
Xiao‐Hong Ma,Yubing Si,Lanlan Luo,Zhao‐Yang Wang,Shuang‐Quan Zang,Thomas C. W. Mak
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-03-30
卷期号:16 (4): 5507-5514
被引量:30
标识
DOI:10.1021/acsnano.1c09911
摘要
Metal precursors employed in the bottom-up synthesis of metal nanoclusters (NCs) are of great importance in directing their composition and geometrical structure. In this work, a silver nanocluster co-protected by phosphine and thiolate, namely, [Ag39(PFBT)24(TPP)8]2- (Ag39, PFBT = pentafluorobenzenethiol, TPP = triphenylphosphine), was isolated and structurally characterized. It adopts a three-layered Ag13@Ag18@Ag8S24P8 core-shell structure. The Ag13@Ag18 kernel is unusual in multilayer noble metal NCs. By introducing a copper precursor in the synthesis, a bimetallic nanocluster [Ag37Cu2(PFBT)24(TPP)8]2- (Ag37Cu2) with an identical structure to Ag39 apart from two outer Ag atoms being substituted by Cu atoms was obtained. Astoundingly, the Cu precursor used in the synthesis was found to be critical in determining the final structure. The alteration of the Cu precursor led to the cocrystallization of the above alloy nanocluster with a Ag14 nanocluster, namely, [Ag37Cu2(PFBT)24(TPP)8]2-·[Ag14(PFBT)6(TPP)8] (Ag37Cu2·Ag14). The electronic structure analyzed by theoretical calculation reveals that Ag39 is a 17-electron open-shell superatom. The optical absorption of Ag39, Ag37Cu2, and Ag37Cu2·Ag14 was compared and studied in detail. This work not only enriches the family of alloy metallic nanoclusters but also provides a metal NC-based cocrystal platform for in-depth study of its crystal growth and photophysical property.
科研通智能强力驱动
Strongly Powered by AbleSci AI