A machine learning framework for urban mining: A case study on recovery of copper from printed circuit boards

随机森林 支持向量机 阿达布思 计算机科学 过程(计算) 数据挖掘 机器学习 人工智能 操作系统
作者
Santosh Daware,Saurav Chandel,Beena Rai
出处
期刊:Minerals Engineering [Elsevier BV]
卷期号:180: 107479-107479 被引量:19
标识
DOI:10.1016/j.mineng.2022.107479
摘要

Plenty of research articles on developing methods to recover metals from secondary sources have been published. These methods are optimized for a specific source and have poor reproducibility when used for different sources. However, the composition of the source changes with time, manufacturer, and geography, making designing the recovery process a tedious endeavor. A modeling framework that captures the source variation and suggests the process parameters was developed and employed to design a process for copper recovery from the printed circuit board (PCB). Data collected from 23-research articles was visualized using four-dimensional plots. Plots show that the leaching time required for Cu recovery is inversely proportional to hydrogen peroxide concentration, acid concentration, and source % Cu. Recovery is amplified and faster when all these parameters are set to high value, which may not be feasible commercially. Five supervised machine-learning algorithms (support vector machine, random forest, gradient boost machine, XG Boost, and AdaBoost) were trained on 1200 data points as classification and regression problems and validated using a 10-fold cross-validation procedure. Models were tested on 120 data points and compared for predicting accuracy; the gradient boost machine model performs best with an MAE of 10.83% and an F1 score of 0.72. Feature importance analysis based on LIME and permutation importance is used to evaluate the contribution of each feature on recovery, and reduced parameter ranges for high recovery are obtained. Our modeling framework is generic, which can be used for designing any recovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木圆发布了新的文献求助10
1秒前
2秒前
核桃发布了新的文献求助10
2秒前
2秒前
浪迹完成签到,获得积分10
2秒前
2秒前
2秒前
Yu发布了新的文献求助20
3秒前
七个泡芙发布了新的文献求助30
3秒前
chen发布了新的文献求助10
4秒前
王檬发布了新的文献求助10
4秒前
刻苦的如霜完成签到,获得积分20
4秒前
深情安青应助lll采纳,获得10
4秒前
HappyFlight9898完成签到,获得积分10
5秒前
小巧的吐司完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助30
5秒前
一颗菠菜完成签到,获得积分10
5秒前
yyy发布了新的文献求助10
7秒前
meiyugao发布了新的文献求助10
7秒前
halogen发布了新的文献求助10
8秒前
ljys完成签到,获得积分10
10秒前
彭于晏应助二十五采纳,获得10
12秒前
打打应助会爬树的苹果采纳,获得10
12秒前
chen完成签到,获得积分10
12秒前
疯狂的炳完成签到,获得积分20
14秒前
14秒前
FashionBoy应助王檬采纳,获得10
16秒前
邓宇彤完成签到,获得积分10
16秒前
霸气幼荷完成签到,获得积分10
16秒前
17秒前
gqz完成签到,获得积分10
17秒前
壮观发布了新的文献求助10
17秒前
dong应助英俊的小恐龙采纳,获得10
18秒前
18秒前
18秒前
小二郎应助hxl采纳,获得10
18秒前
meiyugao完成签到,获得积分10
18秒前
19秒前
20秒前
清风完成签到,获得积分10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182