Many-Scale Investigations of the Deformation Behavior of Polycrystalline Composites: I—Machine Learning Applied for Image Segmentation

计算机科学 像素 人工智能 预处理器 标准差 分割 随机森林 算法 数学 统计
作者
Yanling Schneider,Vighnesh Prabhu,Kai Höss,W. Wasserbäch,Siegfried Schmauder,Zhangjian Zhou
出处
期刊:Materials [MDPI AG]
卷期号:15 (7): 2486-2486 被引量:1
标识
DOI:10.3390/ma15072486
摘要

Our work investigates the polycrystalline composite deformation behavior through multiscale simulations with experimental data at hand. Since deformation mechanisms on the micro-level link the ones on the macro-level and the nanoscale, it is preferable to perform micromechanical finite element simulations based on real microstructures. The image segmentation is a necessary step for the meshing. Our 2D EBSD images contain at least a few hundred grains. Machine learning (ML) was adopted to automatically identify subregions, i.e., individual grains, to improve local feature extraction efficiency and accuracy. Denoising in preprocessing and postprocessing before and after ML, respectively, is beneficial in high quality feature identification. The ML algorithms used were self-developed with the usage of inherent code packages (Python). The performances of the three supervised ML models-decision tree, random forest, and support vector machine-are compared herein; the latter two achieved accuracies of up to 99.8%. Calculations took about 0.5 h from the original input dataset (EBSD image) to the final output (segmented image) running on a personal computer (CPU: 3.6 GHz). For a realizable manual pixel sortation, the original image was firstly scaled from the initial resolution 10802 pixels down to 3002. After ML, some manual work was necessary due to the remaining noises to achieve the final image status ready for meshing. The ML process, including this manual work time, improved efficiency by a factor of about 24 compared to a purely manual process. Simultaneously, ML minimized the geometrical deviation between the identified and original features, since it used the original resolution. For serial work, the time efficiency would be enhanced multiplicatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助xiaoshu采纳,获得10
1秒前
朴素勒完成签到 ,获得积分10
1秒前
ltft发布了新的文献求助10
2秒前
单薄俊驰发布了新的文献求助10
2秒前
Demon发布了新的文献求助10
2秒前
帅哥完成签到,获得积分10
4秒前
慕青应助Fengliguantou采纳,获得10
9秒前
Demon完成签到,获得积分10
9秒前
Bluebulu完成签到 ,获得积分10
9秒前
今后应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
萧水白应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
12秒前
天天快乐应助阳和启蛰采纳,获得10
14秒前
14秒前
戚雅柔完成签到 ,获得积分10
14秒前
17秒前
单薄俊驰完成签到,获得积分10
17秒前
那个笨笨完成签到,获得积分10
17秒前
晚湖完成签到,获得积分10
18秒前
whisper发布了新的文献求助10
18秒前
20秒前
20秒前
胡思乱想发布了新的文献求助10
20秒前
胖一达完成签到 ,获得积分10
21秒前
21秒前
bear发布了新的文献求助10
24秒前
涂楚捷完成签到,获得积分10
24秒前
椒盐鲨鱼皮发布了新的文献求助100
24秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046