Many-Scale Investigations of the Deformation Behavior of Polycrystalline Composites: I—Machine Learning Applied for Image Segmentation

计算机科学 像素 人工智能 预处理器 标准差 分割 随机森林 算法 数学 统计
作者
Yanling Schneider,Vighnesh Prabhu,Kai Höss,W. Wasserbäch,Siegfried Schmauder,Zhangjian Zhou
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:15 (7): 2486-2486 被引量:1
标识
DOI:10.3390/ma15072486
摘要

Our work investigates the polycrystalline composite deformation behavior through multiscale simulations with experimental data at hand. Since deformation mechanisms on the micro-level link the ones on the macro-level and the nanoscale, it is preferable to perform micromechanical finite element simulations based on real microstructures. The image segmentation is a necessary step for the meshing. Our 2D EBSD images contain at least a few hundred grains. Machine learning (ML) was adopted to automatically identify subregions, i.e., individual grains, to improve local feature extraction efficiency and accuracy. Denoising in preprocessing and postprocessing before and after ML, respectively, is beneficial in high quality feature identification. The ML algorithms used were self-developed with the usage of inherent code packages (Python). The performances of the three supervised ML models-decision tree, random forest, and support vector machine-are compared herein; the latter two achieved accuracies of up to 99.8%. Calculations took about 0.5 h from the original input dataset (EBSD image) to the final output (segmented image) running on a personal computer (CPU: 3.6 GHz). For a realizable manual pixel sortation, the original image was firstly scaled from the initial resolution 10802 pixels down to 3002. After ML, some manual work was necessary due to the remaining noises to achieve the final image status ready for meshing. The ML process, including this manual work time, improved efficiency by a factor of about 24 compared to a purely manual process. Simultaneously, ML minimized the geometrical deviation between the identified and original features, since it used the original resolution. For serial work, the time efficiency would be enhanced multiplicatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
开朗代亦发布了新的文献求助10
1秒前
远航发布了新的文献求助10
1秒前
fantexi113发布了新的文献求助10
1秒前
汉堡包应助大神装采纳,获得10
1秒前
西蜀海棠完成签到,获得积分10
2秒前
鲍里斯瓦格完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
温婉发布了新的文献求助10
4秒前
万能图书馆应助hjw采纳,获得10
4秒前
4秒前
4秒前
4秒前
灿2024完成签到,获得积分10
5秒前
Daisy发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
秋颦完成签到,获得积分10
6秒前
6秒前
王子夫完成签到,获得积分10
7秒前
7秒前
狂野晓绿发布了新的文献求助10
7秒前
8秒前
魔道祖师发布了新的文献求助10
8秒前
8秒前
111完成签到,获得积分10
9秒前
9秒前
调皮的一手完成签到 ,获得积分10
9秒前
少艾发布了新的文献求助10
9秒前
9秒前
妮妮发布了新的文献求助30
10秒前
旭东静静发布了新的文献求助10
11秒前
11秒前
长情芷雪发布了新的文献求助10
12秒前
溪水完成签到 ,获得积分10
12秒前
皇帝的床帘完成签到,获得积分10
12秒前
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203058
求助须知:如何正确求助?哪些是违规求助? 4382742
关于积分的说明 13646505
捐赠科研通 4240027
什么是DOI,文献DOI怎么找? 2326295
邀请新用户注册赠送积分活动 1323935
关于科研通互助平台的介绍 1275919