Many-Scale Investigations of the Deformation Behavior of Polycrystalline Composites: I—Machine Learning Applied for Image Segmentation

计算机科学 像素 人工智能 预处理器 标准差 分割 随机森林 算法 数学 统计
作者
Yanling Schneider,Vighnesh Prabhu,Kai Höss,W. Wasserbäch,Siegfried Schmauder,Zhangjian Zhou
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:15 (7): 2486-2486 被引量:1
标识
DOI:10.3390/ma15072486
摘要

Our work investigates the polycrystalline composite deformation behavior through multiscale simulations with experimental data at hand. Since deformation mechanisms on the micro-level link the ones on the macro-level and the nanoscale, it is preferable to perform micromechanical finite element simulations based on real microstructures. The image segmentation is a necessary step for the meshing. Our 2D EBSD images contain at least a few hundred grains. Machine learning (ML) was adopted to automatically identify subregions, i.e., individual grains, to improve local feature extraction efficiency and accuracy. Denoising in preprocessing and postprocessing before and after ML, respectively, is beneficial in high quality feature identification. The ML algorithms used were self-developed with the usage of inherent code packages (Python). The performances of the three supervised ML models-decision tree, random forest, and support vector machine-are compared herein; the latter two achieved accuracies of up to 99.8%. Calculations took about 0.5 h from the original input dataset (EBSD image) to the final output (segmented image) running on a personal computer (CPU: 3.6 GHz). For a realizable manual pixel sortation, the original image was firstly scaled from the initial resolution 10802 pixels down to 3002. After ML, some manual work was necessary due to the remaining noises to achieve the final image status ready for meshing. The ML process, including this manual work time, improved efficiency by a factor of about 24 compared to a purely manual process. Simultaneously, ML minimized the geometrical deviation between the identified and original features, since it used the original resolution. For serial work, the time efficiency would be enhanced multiplicatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小火苗发布了新的文献求助10
刚刚
李德胜完成签到,获得积分10
刚刚
zy0411发布了新的文献求助10
3秒前
Ava应助TanFT采纳,获得10
3秒前
4秒前
乂贰ZERO叁完成签到,获得积分10
6秒前
CKX完成签到,获得积分10
7秒前
8秒前
11秒前
sam完成签到,获得积分10
13秒前
CipherSage应助Jenny采纳,获得10
20秒前
大个应助湛湛采纳,获得10
20秒前
22秒前
玩命的代梅完成签到,获得积分10
22秒前
23秒前
我是老大应助lz采纳,获得10
23秒前
陈慧钦完成签到,获得积分10
26秒前
RONG发布了新的文献求助10
29秒前
李清湛完成签到,获得积分10
29秒前
高高发布了新的文献求助10
29秒前
刻苦的灯泡完成签到,获得积分10
30秒前
王明磊完成签到 ,获得积分10
30秒前
31秒前
32秒前
Karen331完成签到,获得积分10
32秒前
及禾应助liuzengzhang666采纳,获得10
35秒前
lz发布了新的文献求助10
36秒前
湛湛发布了新的文献求助10
36秒前
39秒前
honglingjing完成签到,获得积分10
39秒前
RONG完成签到,获得积分10
41秒前
所所应助科研通管家采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
田様应助科研通管家采纳,获得10
43秒前
大模型应助科研通管家采纳,获得10
43秒前
8R60d8应助科研通管家采纳,获得10
43秒前
天天快乐应助科研通管家采纳,获得10
43秒前
kedaya应助科研通管家采纳,获得10
43秒前
酷波er应助科研通管家采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324