摘要
Chapter 27 Platinum Group Elements: Palladium, Iridium, Osmium, Rhodium, and Ruthenium Alex Lebeau, Alex LebeauSearch for more papers by this author Alex Lebeau, Alex LebeauSearch for more papers by this author Book Editor(s):Raymond D. Harbison, Raymond D. HarbisonSearch for more papers by this authorMarie M. Bourgeois, Marie M. BourgeoisSearch for more papers by this authorGiffe T. Johnson, Giffe T. JohnsonSearch for more papers by this author First published: 20 March 2015 https://doi.org/10.1002/9781118834015.ch27Citations: 2 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The platinoid metals (interchangeably referred to as the platinum group elements [PGE] or platinum group metals [PGM]) include palladium, iridium, osmium, rhodium, and ruthenium, and can be found together in nature in various concentrations. This chapter discusses the uses, physical and chemical properties, bioaccumulation, ecotoxicology and mammalian toxicology, sources of exposure, and industrial hygiene of PGE. Members of the PGE share similar physical and chemical properties with each other, including their ability to resist corrosion. Much like platinum, PGE have the potential to sensitize exposed individuals, with degree of toxicity depending on the exact metal and solubility. Palladium compounds have a low to moderate acute oral toxicity and the toxicity depend on their solubility. Iridium, palladium, and ruthenium/rhodium radioisotopes are used in brachytherapy to treat certain forms of cancer, including prostate, breast, and ocular. REFERENCES American Conference of Governmental Industrial Hygienists (ACGIH) (2012) Threshold Limit Values (TLVs) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs), Cincinnati, OH: American Conference of Governmental Industrial Hygienists. Google Scholar Artelt, S., Kock, H., König, H.P., Levsen, K., and Rosner, G. (1999) Engine dynamometer experiments: platinum emissions from differently aged three-way catalytic converters. Atmos. Environ. 33(21): 3559–3567. 10.1016/S1352-2310(99)00109-0 CASWeb of Science®Google Scholar Bergman, A., Svedberg, U., and Nilsson, E. (1995) Contact urticaria with anaphylactic reactions caused by occupational exposure to iridium salt. Contact Dermatitis 32(1): 14–17. 10.1111/j.1600-0536.1995.tb00833.x PubMedWeb of Science®Google Scholar Calverley, A.E., Rees, D., and Dowdeswell, R.J. (1999) Allergy to complex salts of platinum in refinery workers: prospective evaluations of IgE and Phadiatop status. Clin. Exp. Allergy 29(5): 703–711. 10.1046/j.1365-2222.1999.00515.x CASPubMedWeb of Science®Google Scholar Cristaudo, A., Sera, F., Severino, V., De Rocco, M., Di Lella, E., and Picardo, M. (2005) Occupational hypersensitivity to metal salts, including platinum, in the secondary industry. Allergy 60(2): 159–164. 10.1111/j.1398-9995.2004.00521.x CASPubMedWeb of Science®Google Scholar Daenen, M., Rogiers, P., Van de Walle, C., Rochette, F., Demedts, M., and Nemery, B. (1999) Occupational asthma caused by palladium. Eur. Respir. J. 13(1): 213–216. 10.1034/j.1399-3003.1999.13a39.x CASPubMedWeb of Science®Google Scholar Dubiella-Jackowska, A., Polkowska, Z., and Namiennik, J. (2009) Platinum group elements in the environment: emissions and exposure. Rev. Environ. Contam. Toxicol. 199: 111–135. CASPubMedWeb of Science®Google Scholar Ek, K.H., Morrison, G. M., and Rauch, S. (2004) Environmental routes for platinum group elements to biological materials—a review. Sci. Total Environ. 334–335: 21–38. 10.1016/j.scitotenv.2004.04.027 CASPubMedWeb of Science®Google Scholar Hammer, J., Seewald, D.H., Track, C., Zoidl, J.P., and Labeck, W. (1994) Breast cancer: primary treatment with external-beam radiation therapy and high-dose-rate iridium implantation. Radiology 193(2): 573–577. 10.1148/radiology.193.2.7972782 CASPubMedWeb of Science®Google Scholar Hooda, P.S., Miller, A., and Edwards, A.C. (2008) The plant availability of auto-cast platinum group elements. Environ. Geochem. Health 30(2): 135–139. 10.1007/s10653-008-9134-4 CASPubMedWeb of Science®Google Scholar Isager, P., Ehlers, N., Urbak, S.F., and Overgaard, J. (2006) Visual outcome, local tumour control, and eye preservation after 106Ru/Rh brachytherapy for choroidal melanoma. Acta Oncol. 45(3): 285–293. 10.1080/02841860500468950 PubMedWeb of Science®Google Scholar Johnson Matthey (2013) Platinum 2013, Hertfordshine, UK: Johnson Matthey Public Limited Company. Google Scholar Kielhorn, J., Melber, C., Keller, D., and Mangelsdorf, I. (2002) Palladium—a review of exposure and effects to human health. Int. J. Hyg. Environ. Health 205(6): 417–432. 10.1078/1438-4639-00180 CASPubMedWeb of Science®Google Scholar Krebs, R.E. (2006) The History and Use of Our Earth's Chemical Elements: A Reference Guide, 2nd ed., Westport, Connecticut: Greenwood Press. Google Scholar Lide, D.R. (2006) CRC Handbook of Chemistry and Physics, 87th ed., Boca Raton, FL: CRC Press, pp. 4-19–4-31. Google Scholar Makarovsky, I., Markel, G., Hoffman, A., Schein, O., Finkelstien, A., Brosh-Nissimov, T., Tashma, Z., Dushnitsky, T., and Eisenkraft, A. (2007) Osmium tetroxide: a new kind of weapon. Isr. Med. Assoc. J. 9(10): 750–752. CASPubMedWeb of Science®Google Scholar McLaughlin, L.A., Milton, R., and Perry, K.M. (1946) Toxic manifestations of osmium tetroxide. Br. J. Ind. Med. 3: 183–186. CASPubMedWeb of Science®Google Scholar Merget, R., Schulte, A., Gebler, A., Breitstadt, R., Kulzer, R., Berndt, E.D., Baur, X., and Schultze-Werninghaus, G. (1999) Outcome of occupational asthma due to platinum salts after transferral to low-exposure areas. Int. Arch. Occup. Environ. Health 72(1): 33–39. 10.1007/s004200050331 CASPubMedWeb of Science®Google Scholar Michalski, J., Mutic, S., Eichling, J., and Ahmed, S.N. (2003) Radiation exposure to family and household members after prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 56(3): 764–768. 10.1016/S0360-3016(03)00002-6 PubMedWeb of Science®Google Scholar Moldovan, M. (2007) Origin and fate of platinum group elements in the environment. Anal. Bioanal. Chem. 388(3): 537–540. 10.1007/s00216-007-1234-y CASPubMedWeb of Science®Google Scholar Murdoch, R.D., Pepys, J., and Hughes, E.G. (1986) IgE antibody responses to platinum group metals: a large scale refinery survey. Br. J. Ind. Med. 43(1): 37–43. PubMedWeb of Science®Google Scholar National Institute of Occupational Safety and Health (NIOSH) (2005) Pocket Guide to Chemical Hazards, Cincinnati, OH: NIOSH Publications. Google Scholar Ravindra, K., Bencs, L., and Van Grieken, R. (2004) Platinum group elements in the environment and their health risk. Sci. Total Environ. 318(1–3): 1–43. 10.1016/S0048-9697(03)00372-3 CASPubMedWeb of Science®Google Scholar Sevan'kaev, A.V., Lloyd, D.C., Edwards, A.A., Moquet, J.E., Nugis, V.Y., Mikhailova, G.M., Potetnya, O.I., Khvostunov, I.K., Guskova, A.K., Baranov, A.E., and Nadejina, N.M. (2002) Cytogenic investigations of serious overexposures to an industrial gamma radiography source. Radiat. Prot. Dosimetry 102(3): 201–206. 10.1093/oxfordjournals.rpd.a006090 CASPubMedWeb of Science®Google Scholar USEPA AEGL (2008) United States Environmental Protection Agency Acute Exposure Guideline Levels. Available at http://www.epa.gov/oppt/aegl/ (accessed January 8, 2014). Google Scholar USEPA IRIS (n.d.) United States Environmental Protection Agency Integrated Risk Information System. Available at http://www.epa.gov/iris/ (accessed January 6, 2014). Google Scholar WHO (2002) World Health Organization Environmental Health Criteria 226: Palladium. Geneva. Available at http://www.who.int/ipcs/publications/ehc/en/ehc226.pdf. Google Scholar Wiseman, C.L. and Zereini, F. (2009) Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Sci. Total Environ. 407(8): 2493–2500. 10.1016/j.scitotenv.2008.12.057 CASPubMedWeb of Science®Google Scholar Citing Literature Hamilton & Hardy's Industrial Toxicology ReferencesRelatedInformation