Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM

太阳辐照度 辐照度 光伏系统 过度拟合 均方误差 人工神经网络 计算机科学 气象学 环境科学 机器学习 工程类 统计 数学 地理 物理 电气工程 量子力学
作者
Xiangyun Qing,Yugang Niu
出处
期刊:Energy [Elsevier BV]
卷期号:148: 461-468 被引量:774
标识
DOI:10.1016/j.energy.2018.01.177
摘要

Prediction of solar irradiance is essential for minimizing energy costs and providing high power quality in electrical power grids with distributed solar photovoltaic generations. However, for residential and small commercial users deploying on-site photovoltaic generations, the historical irradiance data can not be obtained directly because of expensive solar irradiance meters. Thanks to increasingly improved weather forecasting service provided by local meteorological organizations, weather forecasting data such as temperature, dew point, humidity, visibility, wind speed and descriptive weather summary, are becoming readily available through the Internet, while the irradiance forecasting data are often unavailable. This paper proposes a novel solar prediction scheme for hourly day-ahead solar irradiance prediction by using the weather forecasting data. This study formulates the prediction problem as a structured output prediction problem jointly predicting multiple outputs simultaneously. The proposed prediction model is trained by using long short-term memory (LSTM) networks taking into account the dependence between consecutive hours of the same day. We compare persistence algorithm, linear least square regression and multilayered feedforward neural networks using backpropagation algorithm (BPNN) for solar irradiance prediction. The experimental results on a dataset collected in island of Santiago, Cape Verde, demonstrate that the proposed algorithm outperforms these competitive algorithms for single output prediction. The proposed algorithm is %18.34 more accurate than BPNN in terms of root mean square error (RMSE) by using about 2 years training data to predict half-year testing data. Moreover, compared with BPNN, the proposed algorithm also shows less overfitting and better generalization capability. For a case using 10 years of historical data to predict 1 year of irradiance data, the prediction RMSE using the proposed LSTM algorithm decreases by 42.9% against BPNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莹莹哒发布了新的文献求助10
刚刚
1秒前
1秒前
万锦寰完成签到,获得积分10
2秒前
CCY发布了新的文献求助10
2秒前
wu8577应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
wu8577应助科研通管家采纳,获得10
5秒前
慕青应助快乐的曼冬采纳,获得10
5秒前
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
香蕉觅云应助王华瑞采纳,获得10
6秒前
xly完成签到 ,获得积分10
6秒前
6秒前
7秒前
废柴完成签到 ,获得积分10
7秒前
8秒前
wqidoctor发布了新的文献求助10
9秒前
11秒前
aaaaaa发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
LiXingchen完成签到,获得积分10
12秒前
思源应助hubo采纳,获得10
12秒前
13秒前
鱼鳞飞飞完成签到,获得积分20
13秒前
大模型应助loong采纳,获得10
14秒前
15秒前
16秒前
CipherSage应助caicai采纳,获得10
16秒前
18秒前
Dylan发布了新的文献求助10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501