零价铁
水溶液
镉
吸热过程
硫化物
无机化学
分散性
化学
降水
核化学
硫化镉
物理化学
吸附
高分子化学
有机化学
物理
气象学
作者
Dan Lv,Xiaoxin Zhou,Jiasheng Zhou,Yuanli Liu,Yizhou Li,Kunlun Yang,Zimo Lou,Shams Ali Baig,Donglei Wu,Xinhua Xu
标识
DOI:10.1016/j.apsusc.2018.02.085
摘要
Nanoscale zero-valent iron (nZVI) has high removal efficiency and strong reductive ability to organic and inorganic contaminants, but concerns over its stability and dispersity limit its application. In this study, nZVI was modified with sulfide to enhance Cd(II) removal from aqueous solutions. TEM and SEM analyses showed that sulfide-modified nZVI (S-nZVI) had a core-shell structure of nano-sized spherical particles, and BET results proved that sulfide modification doubled the specific surface area from 26.04 to 50.34 m2 g−1 and inhibited the aggregation of nZVI. Mechanism analysis indicated that Cd(II) was immobilized through complexation and precipitation. Cd(II) removal rate on nZVI was only 32% in 2 h, while complete immobilization could be achieved in 15 min on S-nZVI, and S-nZVI with an optimal S/Fe molar ratio of 0.3 offered a cadmium removal capacity of about 150 mg g−1 at pH 7 and 303 K. The process of Cd(II) immobilization on S-nZVI was fitted well with pseudo-second-order kinetic model, and the increase of temperature favored Cd(II) immobilization, suggesting an endothermic process. The presence of Mg2+ and Ca2+ hindered Cd(II) removal while Cu2+ did the opposite, which led to the order as Cu2+ > control > Mg2+ > Ca2+. The removal rate of 20 mg L−1 Cd(II) maintained a high level with the fluctuation of environmental conditions such as pH, ion strength and presence of HA. This study demonstrated that S-nZVI could be a promising adsorbent for Cd(II) immobilization from cadmium-contaminated water.
科研通智能强力驱动
Strongly Powered by AbleSci AI