Deep spatial-temporal feature fusion for facial expression recognition in static images

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 面部表情 特征(语言学) 特征提取 光流 面子(社会学概念) 计算机视觉 深度学习 面部识别系统 图像(数学) 社会科学 哲学 语言学 社会学
作者
Ning Sun,Qi Li,Ruizhi Huan,Jixin Liu,Guang Han
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:119: 49-61 被引量:98
标识
DOI:10.1016/j.patrec.2017.10.022
摘要

Traditional methods of performing facial expression recognition commonly use hand-crafted spatial features. This paper proposes a multi-channel deep neural network that learns and fuses the spatial-temporal features for recognizing facial expressions in static images. The essential idea of this method is to extract optical flow from the changes between the peak expression face image (emotional-face) and the neutral face image (neutral-face) as the temporal information of a certain facial expression, and use the gray-level image of emotional-face as the spatial information. A Multi-channel Deep Spatial-Temporal feature Fusion neural Network (MDSTFN) is presented to perform the deep spatial-temporal feature extraction and fusion from static images. Each channel of the proposed method is fine-tuned from a pre-trained deep convolutional neural networks (CNN) instead of training a new CNN from scratch. In addition, average-face is used as a substitute for neutral-face in real-world applications. Extensive experiments are conducted to evaluate the proposed method on benchmarks databases including CK+, MMI, and RaFD. The results show that the optical flow information from emotional-face and neutral-face is a useful complement to spatial feature and can effectively improve the performance of facial expression recognition from static images. Compared with state-of-the-art methods, the proposed method can achieve better recognition accuracy, with rates of 98.38% on the CK+ database, 99.17% on the RaFD database, and 99.59% on the MMI database, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wpzzpw发布了新的文献求助10
1秒前
Xxiao完成签到,获得积分20
1秒前
1秒前
研友_VZG7GZ应助眼泪成诗采纳,获得10
1秒前
雪景写诗发布了新的文献求助10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
酷波er应助易安采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
xin应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
lyf471应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得50
2秒前
Orange应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
3秒前
芝麻糊应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得50
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
Acetonitrile应助科研通管家采纳,获得20
3秒前
豆子完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
actor2006发布了新的文献求助10
3秒前
4秒前
赛德克发布了新的文献求助30
4秒前
4秒前
4秒前
kingwill应助感动的嚓茶采纳,获得100
4秒前
乐观的鸽子完成签到,获得积分10
4秒前
GLH完成签到,获得积分20
5秒前
5秒前
jimmy发布了新的文献求助10
5秒前
5秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
The Oxford Handbook of Transcranial Stimulation (the second edition) 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3437848
求助须知:如何正确求助?哪些是违规求助? 3034866
关于积分的说明 8956302
捐赠科研通 2722867
什么是DOI,文献DOI怎么找? 1493604
科研通“疑难数据库(出版商)”最低求助积分说明 690306
邀请新用户注册赠送积分活动 686727