Deep spatial-temporal feature fusion for facial expression recognition in static images

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 面部表情 特征(语言学) 特征提取 光流 面子(社会学概念) 计算机视觉 深度学习 面部识别系统 图像(数学) 社会学 哲学 语言学 社会科学
作者
Ning Sun,Qi Li,Ruizhi Huan,Jixin Liu,Guang Han
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:119: 49-61 被引量:98
标识
DOI:10.1016/j.patrec.2017.10.022
摘要

Traditional methods of performing facial expression recognition commonly use hand-crafted spatial features. This paper proposes a multi-channel deep neural network that learns and fuses the spatial-temporal features for recognizing facial expressions in static images. The essential idea of this method is to extract optical flow from the changes between the peak expression face image (emotional-face) and the neutral face image (neutral-face) as the temporal information of a certain facial expression, and use the gray-level image of emotional-face as the spatial information. A Multi-channel Deep Spatial-Temporal feature Fusion neural Network (MDSTFN) is presented to perform the deep spatial-temporal feature extraction and fusion from static images. Each channel of the proposed method is fine-tuned from a pre-trained deep convolutional neural networks (CNN) instead of training a new CNN from scratch. In addition, average-face is used as a substitute for neutral-face in real-world applications. Extensive experiments are conducted to evaluate the proposed method on benchmarks databases including CK+, MMI, and RaFD. The results show that the optical flow information from emotional-face and neutral-face is a useful complement to spatial feature and can effectively improve the performance of facial expression recognition from static images. Compared with state-of-the-art methods, the proposed method can achieve better recognition accuracy, with rates of 98.38% on the CK+ database, 99.17% on the RaFD database, and 99.59% on the MMI database, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Z趋势完成签到,获得积分10
1秒前
sdd完成签到,获得积分10
1秒前
2秒前
温婉的靖儿完成签到,获得积分10
2秒前
3秒前
不去明知山完成签到 ,获得积分10
4秒前
汉堡包应助自信的书南采纳,获得10
5秒前
所所应助今晚吃什么采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
情怀应助哈哈哈哈采纳,获得10
6秒前
6秒前
Orange应助Ann采纳,获得10
7秒前
放大镜发布了新的文献求助10
7秒前
斯文败类应助碎碎念采纳,获得10
7秒前
8秒前
entang完成签到,获得积分10
8秒前
8秒前
聖璕完成签到,获得积分10
8秒前
彩色青亦完成签到,获得积分10
8秒前
FIN应助yeurekar采纳,获得10
8秒前
9秒前
cgs发布了新的文献求助10
9秒前
英俊的铭应助羊蓝蓝蓝采纳,获得10
9秒前
半夏完成签到,获得积分10
9秒前
ira完成签到,获得积分10
10秒前
Nero29完成签到,获得积分10
10秒前
11秒前
Ghiocel发布了新的文献求助10
11秒前
搜集达人应助啊啊啊啊跃采纳,获得10
11秒前
遇见发布了新的文献求助10
11秒前
狗大王完成签到,获得积分10
11秒前
11秒前
香蕉觅云应助甜美牛青采纳,获得30
12秒前
ED应助jjgbmt采纳,获得10
12秒前
顾矜应助噢噢噢采纳,获得10
12秒前
12秒前
panpan发布了新的文献求助10
12秒前
匹诺曹发布了新的文献求助10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095