Facet-Regulating Local Coordination of Dual-Atom Cocatalyzed TiO2 for Photocatalytic Water Splitting

光催化 双金属片 分解水 光化学 催化作用 Atom(片上系统) 化学 吸附 材料科学 纳米技术 结晶学 物理化学 计算机科学 生物化学 嵌入式系统
作者
Tingcha Wei,Peijia Ding,Tao Wang,Limin Liu,Xiaoqiang An,Xuelian Yu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (23): 14669-14676 被引量:77
标识
DOI:10.1021/acscatal.1c03703
摘要

Bi- or multimetallic catalytic sites exhibit particularly high catalytic activities in contrast to regular single-atom catalysts. Until recently, it has remained a great challenge to precisely regulate the electronic coupling between neighboring atomically dispersed atoms. Herein, we experimentally demonstrated that the coordination environment of PtAu dual atoms could be facilely regulated by engineering the exposed facets of TiO2 supports. Due to the metal–support interactions originated from coordinatively unsaturated sites, atomic cocatalysts were anchored onto {001}-TiO2 through Pt–O and Au–O bonds, while {101}-TiO2 was preferential for Pt–O and Au nanoparticles. The dual-atom cocatalyzed PtAu/{001}-TiO2 presented a 1000-fold increase in the H2 evolution rate compared to blank {001}-TiO2, which was even 4 times higher than PtAu/{101}-TiO2. The enhancement mechanism relies on the synergy of PtAu dual-atom cocatalysts, which can mutually optimize the electronic states of both Pt and Au sites to decrease the Gibbs free energies of hydrogen adsorption. Particularly, the Pt atom is activated by the Au atom and the activity of catalysts is further enhanced through the dimer interaction. The strategy of neighboring interactive bimetallic sites provides emerging opportunities for the rational design of high-performance catalysts with atomically engineered electronic states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
marjorie发布了新的文献求助10
刚刚
沉静柚子发布了新的文献求助10
1秒前
brave完成签到 ,获得积分10
1秒前
skf发布了新的文献求助10
1秒前
1秒前
guojingjing发布了新的文献求助10
1秒前
三石完成签到,获得积分10
2秒前
2秒前
3秒前
核桃应助zhou_nuo采纳,获得10
3秒前
4秒前
orixero应助穆头呼橹橹采纳,获得10
4秒前
冯先森ya完成签到,获得积分10
4秒前
5秒前
Shaw发布了新的文献求助10
5秒前
霸气小懒虫完成签到,获得积分20
6秒前
6秒前
情怀应助呆熊采纳,获得10
6秒前
wanci应助忧郁的白竹采纳,获得10
7秒前
7秒前
7秒前
8秒前
兰真纯洁发布了新的文献求助10
8秒前
8秒前
哲别发布了新的文献求助10
8秒前
jiaming发布了新的文献求助10
8秒前
9秒前
652183758完成签到 ,获得积分10
9秒前
YYCBNU发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
秋秋秋l完成签到,获得积分10
11秒前
sun发布了新的文献求助10
11秒前
zhang完成签到 ,获得积分10
12秒前
华仔应助风中的向卉采纳,获得10
12秒前
12秒前
非理性或完成签到,获得积分10
12秒前
fruchtjelly发布了新的文献求助10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206480
求助须知:如何正确求助?哪些是违规求助? 4384909
关于积分的说明 13654925
捐赠科研通 4243191
什么是DOI,文献DOI怎么找? 2327972
邀请新用户注册赠送积分活动 1325674
关于科研通互助平台的介绍 1277765