Application of machine learning algorithm for predicting gestational diabetes mellitus in early pregnancy†

妊娠期糖尿病 随机森林 机器学习 算法 接收机工作特性 人工智能 预测建模 医学 怀孕 计算机科学 产科 妊娠期 遗传学 生物
作者
Lili Wei,Yueshuai Pan,Yan Zhang,Kai Chen,Haoyu Wang,Jingyuan Wang
出处
期刊:Frontiers of Nursing [De Gruyter]
卷期号:8 (3): 209-221 被引量:2
标识
DOI:10.2478/fon-2021-0022
摘要

Abstract Objective To study the application of a machine learning algorithm for predicting gestational diabetes mellitus (GDM) in early pregnancy. Methods This study identified indicators related to GDM through a literature review and expert discussion. Pregnant women who had attended medical institutions for an antenatal examination from November 2017 to August 2018 were selected for analysis, and the collected indicators were retrospectively analyzed. Based on Python, the indicators were classified and modeled using a random forest regression algorithm, and the performance of the prediction model was analyzed. Results We obtained 4806 analyzable data from 1625 pregnant women. Among these, 3265 samples with all 67 indicators were used to establish data set F1; 4806 samples with 38 identical indicators were used to establish data set F2. Each of F1 and F2 was used for training the random forest algorithm. The overall predictive accuracy of the F1 model was 93.10%, area under the receiver operating characteristic curve (AUC) was 0.66, and the predictive accuracy of GDM-positive cases was 37.10%. The corresponding values for the F2 model were 88.70%, 0.87, and 79.44%. The results thus showed that the F2 prediction model performed better than the F1 model. To explore the impact of sacrificial indicators on GDM prediction, the F3 data set was established using 3265 samples (F1) with 38 indicators (F2). After training, the overall predictive accuracy of the F3 model was 91.60%, AUC was 0.58, and the predictive accuracy of positive cases was 15.85%. Conclusions In this study, a model for predicting GDM with several input variables (e.g., physical examination, past history, personal history, family history, and laboratory indicators) was established using a random forest regression algorithm. The trained prediction model exhibited a good performance and is valuable as a reference for predicting GDM in women at an early stage of pregnancy. In addition, there are certain requirements for the proportions of negative and positive cases in sample data sets when the random forest algorithm is applied to the early prediction of GDM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助清脆的书桃采纳,获得10
1秒前
2秒前
研友_VZG7GZ应助糊涂的青亦采纳,获得10
2秒前
跳羚完成签到,获得积分10
3秒前
老王完成签到,获得积分10
3秒前
FashionBoy应助板栗采纳,获得10
4秒前
SpONGeBOb完成签到 ,获得积分10
4秒前
烟花应助吧唧吧唧采纳,获得20
4秒前
眯眯眼的衬衫应助neckerzhu采纳,获得10
5秒前
泥娃娃完成签到,获得积分10
5秒前
tesla发布了新的文献求助10
7秒前
yi发布了新的文献求助200
7秒前
英俊的铭应助Rita采纳,获得10
7秒前
桐桐应助司空三毒采纳,获得10
8秒前
善学以致用应助111采纳,获得30
9秒前
ding应助缥缈以珊采纳,获得10
10秒前
蝉夏发布了新的文献求助30
10秒前
10秒前
hnxxangel发布了新的文献求助10
11秒前
mafukairi应助打死小胖纸采纳,获得10
12秒前
科研通AI5应助852采纳,获得20
13秒前
13秒前
西南楚留香完成签到,获得积分10
14秒前
16秒前
16秒前
123应助秋寒云采纳,获得10
17秒前
烟花应助Trinity采纳,获得30
17秒前
英姑应助嘎嘎采纳,获得10
18秒前
18秒前
CT民工完成签到,获得积分10
18秒前
18秒前
故意的一刀完成签到 ,获得积分10
19秒前
20秒前
20秒前
吧唧吧唧发布了新的文献求助20
21秒前
ShinrayLee给Lion的求助进行了留言
21秒前
22秒前
华仔应助XH采纳,获得10
23秒前
23秒前
tesla发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554070
求助须知:如何正确求助?哪些是违规求助? 3129835
关于积分的说明 9384354
捐赠科研通 2828932
什么是DOI,文献DOI怎么找? 1555328
邀请新用户注册赠送积分活动 725969
科研通“疑难数据库(出版商)”最低求助积分说明 715352