Intelligent fault diagnosis under small sample size conditions via Bidirectional InfoMax GAN with unsupervised representation learning

计算机科学 特征学习 人工智能 特征(语言学) 最大熵 特征提取 编码器 代表(政治) 模式识别(心理学) 机器学习 人工神经网络 约束(计算机辅助设计) 故障检测与隔离 断层(地质) 自编码 深度学习 无监督学习 数学 几何学 盲信号分离 频道(广播) 地质学 哲学 操作系统 语言学 计算机网络 地震学 执行机构 法学 政治 政治学
作者
Shen Liu,Jinglong Chen,Shuilong He,Enyong Xu,Haixin Lv,Zitong Zhou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:232: 107488-107488 被引量:23
标识
DOI:10.1016/j.knosys.2021.107488
摘要

The abnormal detection of rotating machinery under small sample size conditions is of prime importance in the field of fault diagnosis. In this work, we proposed an unsupervised representation learning method called Bidirectional InfoMax GAN (BIMGAN), which can perform fast and effective feature extraction and fault recognition with few samples. First, we obtain the low-dimensional feature representation by a prior normalized encoder and reconstruction of the sample via the generator. Second, the mapping relationship between the sample and its corresponding feature representation is learned by maximizing mutual information estimation with the constraint of the feature matching (FM) strategy. Different from the general GANs, we are aiming at learning a good feature mapping of an encoder to capture the feature representation instead of reconstructing realistic samples. And then, a supervised pattern recognition task based on the feature representation is conducted for fault diagnosis. Finally, the inverse mapping learned by the encoder is visualized and the effectiveness is demonstrated. And the performance of the proposed method outperforms several advanced unsupervised methods on two case studies of rolling bearings fault recognition with some standard architectures, where the average accuracy can achieve 99.73% and 98.36% respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助南宫傻姑采纳,获得10
刚刚
1秒前
科研小白完成签到,获得积分10
2秒前
lili完成签到 ,获得积分10
2秒前
科研通AI2S应助流星砸地鼠采纳,获得10
2秒前
SAVP完成签到,获得积分20
2秒前
3秒前
科研通AI6应助He采纳,获得10
4秒前
叮咚发布了新的文献求助10
4秒前
小猫咪完成签到,获得积分10
5秒前
SAVP发布了新的文献求助10
6秒前
6秒前
6秒前
SW完成签到,获得积分10
6秒前
xzzt完成签到 ,获得积分10
7秒前
mdx发布了新的文献求助10
8秒前
星辰大海应助早睡早起采纳,获得10
8秒前
8秒前
仲夏回忆发布了新的文献求助10
9秒前
9秒前
隐形曼青应助FOOL采纳,获得10
10秒前
木木木sls完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
谷雨应助xxx采纳,获得10
11秒前
科研通AI6应助路途采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
muyongxin完成签到 ,获得积分10
12秒前
12秒前
333发布了新的文献求助10
13秒前
14秒前
星辰大海应助wangtp采纳,获得10
14秒前
14秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240