Intelligent fault diagnosis under small sample size conditions via Bidirectional InfoMax GAN with unsupervised representation learning

计算机科学 特征学习 人工智能 特征(语言学) 最大熵 特征提取 编码器 代表(政治) 模式识别(心理学) 机器学习 人工神经网络 约束(计算机辅助设计) 故障检测与隔离 断层(地质) 自编码 深度学习 无监督学习 数学 几何学 盲信号分离 频道(广播) 地质学 哲学 操作系统 语言学 计算机网络 地震学 执行机构 法学 政治 政治学
作者
Shen Liu,Jinglong Chen,Shuilong He,Enyong Xu,Haixin Lv,Zitong Zhou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:232: 107488-107488 被引量:23
标识
DOI:10.1016/j.knosys.2021.107488
摘要

The abnormal detection of rotating machinery under small sample size conditions is of prime importance in the field of fault diagnosis. In this work, we proposed an unsupervised representation learning method called Bidirectional InfoMax GAN (BIMGAN), which can perform fast and effective feature extraction and fault recognition with few samples. First, we obtain the low-dimensional feature representation by a prior normalized encoder and reconstruction of the sample via the generator. Second, the mapping relationship between the sample and its corresponding feature representation is learned by maximizing mutual information estimation with the constraint of the feature matching (FM) strategy. Different from the general GANs, we are aiming at learning a good feature mapping of an encoder to capture the feature representation instead of reconstructing realistic samples. And then, a supervised pattern recognition task based on the feature representation is conducted for fault diagnosis. Finally, the inverse mapping learned by the encoder is visualized and the effectiveness is demonstrated. And the performance of the proposed method outperforms several advanced unsupervised methods on two case studies of rolling bearings fault recognition with some standard architectures, where the average accuracy can achieve 99.73% and 98.36% respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助多余采纳,获得10
刚刚
YAN完成签到 ,获得积分10
2秒前
xinL完成签到,获得积分10
2秒前
wujingshuai完成签到,获得积分10
3秒前
月光光完成签到,获得积分10
5秒前
成就若颜完成签到,获得积分10
5秒前
6秒前
典雅浩轩完成签到,获得积分10
6秒前
夏雪儿完成签到,获得积分10
6秒前
n0way完成签到,获得积分10
10秒前
ShawnJohn完成签到,获得积分10
11秒前
Scheduling完成签到 ,获得积分10
12秒前
万能图书馆应助aikeyan采纳,获得10
12秒前
SaSa发布了新的文献求助20
13秒前
孤独丹秋完成签到,获得积分10
13秒前
林夏完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
hhhhhha完成签到,获得积分10
14秒前
虚幻的香彤完成签到,获得积分10
14秒前
hitzwd完成签到,获得积分10
15秒前
能干戎完成签到,获得积分10
15秒前
赘婿应助平平宁采纳,获得10
16秒前
杨鑫萍完成签到 ,获得积分10
17秒前
彭于晏应助依紫采纳,获得10
18秒前
香蕉觅云应助kong采纳,获得10
18秒前
Loooong发布了新的文献求助10
19秒前
小红完成签到,获得积分10
20秒前
BLAZe完成签到 ,获得积分10
22秒前
赫尔坤兰完成签到 ,获得积分10
22秒前
酷炫凡完成签到 ,获得积分10
24秒前
闫佳美发布了新的文献求助20
25秒前
热心不凡完成签到,获得积分10
25秒前
lllllsy完成签到 ,获得积分10
25秒前
27秒前
依紫完成签到,获得积分10
27秒前
一只大憨憨猫完成签到,获得积分10
27秒前
会撒娇的乌冬面完成签到 ,获得积分10
27秒前
平平宁完成签到,获得积分10
27秒前
耍酷寻双完成签到 ,获得积分0
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645160
求助须知:如何正确求助?哪些是违规求助? 4767911
关于积分的说明 15026597
捐赠科研通 4803591
什么是DOI,文献DOI怎么找? 2568393
邀请新用户注册赠送积分活动 1525717
关于科研通互助平台的介绍 1485369