已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep-learning model for identifying fresh vertebral compression fractures on digital radiography

医学 磁共振成像 置信区间 放射科 核医学 神经组阅片室 曲线下面积 射线照相术 超声波 介入放射学 神经学 内科学 精神科
作者
Weijuan Chen,Xi Liu,Kunhua Li,Yin Luo,Shanwei Bai,Jiangfen Wu,Weidao Chen,Mengxing Dong,Dajing Guo
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 1496-1505 被引量:46
标识
DOI:10.1007/s00330-021-08247-4
摘要

To develop a deep-learning (DL) model for identifying fresh VCFs from digital radiography (DR), with magnetic resonance imaging (MRI) as the reference standard. Patients with lumbar VCFs were retrospectively enrolled from January 2011 to May 2020. All patients underwent DR and MRI scanning. VCFs were categorized as fresh or old according to MRI results, and the VCF grade and type were assessed. The raw DR data were sent to InferScholar Center for annotation. A DL-based prediction model was built, and its diagnostic performance was evaluated. The DeLong test was applied to assess differences in ROC curves between different models. A total of 1877 VCFs in 1099 patients were included in our study and randomly divided into development (n = 824 patients) and test (n = 275 patients) datasets. The ensemble model identified fresh and old VCFs, reaching an AUC of 0.80 (95% confidence interval [CI], 0.77–0.83), an accuracy of 74% (95% CI, 72–77%), a sensitivity of 80% (95% CI, 77–83%), and a specificity of 68% (95% CI, 63–72%). Lateral (AUC, 0.83) views exhibited better performance than anteroposterior views (AUC, 0.77), and the best performance among respective subgroupings was obtained for grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups. The proposed DL model achieved adequate performance in identifying fresh VCFs from DR. • The ensemble deep-learning model identified fresh VCFs from DR, reaching an AUC of 0.80, an accuracy of 74%, a sensitivity of 80%, and a specificity of 68% with the reference standard of MRI. • The lateral views (AUC, 0.83) exhibited better performance than anteroposterior views (AUC, 0.77). • The grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups showed the best performance among their respective subgroupings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑语解清愁完成签到,获得积分10
刚刚
靓丽的冰旋完成签到,获得积分10
1秒前
烈阳发布了新的文献求助10
2秒前
JERRY完成签到 ,获得积分10
2秒前
Jasper应助于鱼采纳,获得10
2秒前
路冰完成签到,获得积分10
3秒前
思源应助小白菜采纳,获得10
4秒前
6秒前
8秒前
白露发布了新的文献求助10
10秒前
10秒前
沉默的烤鸡完成签到,获得积分10
10秒前
领导范儿应助RC采纳,获得10
11秒前
烟花应助Sinner采纳,获得10
12秒前
Allurin完成签到 ,获得积分10
12秒前
14秒前
巫马尔槐发布了新的文献求助30
15秒前
李健的小迷弟应助哈哈哈采纳,获得10
16秒前
jojo发布了新的文献求助10
16秒前
科研通AI6应助拉长的人雄采纳,获得10
17秒前
JamesPei应助牧笛采纳,获得10
17秒前
驼鹿队长完成签到,获得积分10
19秒前
ding应助Ni采纳,获得10
20秒前
20秒前
科研通AI6应助抹茶木木采纳,获得10
22秒前
23秒前
LJP发布了新的文献求助10
23秒前
科目三应助nicholas采纳,获得10
24秒前
HHH完成签到 ,获得积分10
24秒前
25秒前
imagine完成签到,获得积分10
25秒前
26秒前
安详的海风完成签到,获得积分10
28秒前
Ni发布了新的文献求助10
28秒前
张某某完成签到,获得积分10
28秒前
29秒前
30秒前
打打应助LJP采纳,获得10
30秒前
完美世界应助彬彬采纳,获得10
31秒前
科研通AI6应助悬铃木采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558