A deep-learning model for identifying fresh vertebral compression fractures on digital radiography

医学 磁共振成像 置信区间 放射科 核医学 神经组阅片室 曲线下面积 射线照相术 超声波 介入放射学 神经学 内科学 精神科
作者
Weijuan Chen,Xi Liu,Kunhua Li,Yin Luo,Shanwei Bai,Jiangfen Wu,Weidao Chen,Mengxing Dong,Dajing Guo
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 1496-1505 被引量:29
标识
DOI:10.1007/s00330-021-08247-4
摘要

To develop a deep-learning (DL) model for identifying fresh VCFs from digital radiography (DR), with magnetic resonance imaging (MRI) as the reference standard. Patients with lumbar VCFs were retrospectively enrolled from January 2011 to May 2020. All patients underwent DR and MRI scanning. VCFs were categorized as fresh or old according to MRI results, and the VCF grade and type were assessed. The raw DR data were sent to InferScholar Center for annotation. A DL-based prediction model was built, and its diagnostic performance was evaluated. The DeLong test was applied to assess differences in ROC curves between different models. A total of 1877 VCFs in 1099 patients were included in our study and randomly divided into development (n = 824 patients) and test (n = 275 patients) datasets. The ensemble model identified fresh and old VCFs, reaching an AUC of 0.80 (95% confidence interval [CI], 0.77–0.83), an accuracy of 74% (95% CI, 72–77%), a sensitivity of 80% (95% CI, 77–83%), and a specificity of 68% (95% CI, 63–72%). Lateral (AUC, 0.83) views exhibited better performance than anteroposterior views (AUC, 0.77), and the best performance among respective subgroupings was obtained for grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups. The proposed DL model achieved adequate performance in identifying fresh VCFs from DR. • The ensemble deep-learning model identified fresh VCFs from DR, reaching an AUC of 0.80, an accuracy of 74%, a sensitivity of 80%, and a specificity of 68% with the reference standard of MRI. • The lateral views (AUC, 0.83) exhibited better performance than anteroposterior views (AUC, 0.77). • The grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups showed the best performance among their respective subgroupings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噜噜晓发布了新的文献求助10
1秒前
2秒前
迪琛发布了新的文献求助10
2秒前
3秒前
Siney完成签到,获得积分10
4秒前
向天歌完成签到,获得积分10
4秒前
小巧的白亦应助Robin采纳,获得10
4秒前
kxmm关注了科研通微信公众号
4秒前
马俣辰完成签到,获得积分10
7秒前
无奈的尔容完成签到,获得积分20
9秒前
9秒前
123发布了新的文献求助10
9秒前
大脸发布了新的文献求助10
9秒前
V_I_G完成签到,获得积分10
11秒前
马俣辰发布了新的文献求助10
12秒前
12秒前
杏小叶发布了新的文献求助10
12秒前
12秒前
飘逸的念露完成签到,获得积分10
13秒前
水知寒完成签到,获得积分10
13秒前
13秒前
舒适的猕猴桃完成签到 ,获得积分10
13秒前
史宸瑞完成签到,获得积分10
14秒前
丁的发布了新的文献求助10
14秒前
solar完成签到,获得积分10
16秒前
李爱国应助完美的一斩采纳,获得10
17秒前
乐乐应助Lucifer2012采纳,获得10
17秒前
葫芦娃大铁锤完成签到 ,获得积分10
17秒前
reset完成签到 ,获得积分10
19秒前
19秒前
bkagyin应助xxxx采纳,获得10
19秒前
20秒前
xiaomeng发布了新的文献求助10
20秒前
xianyuerkyt完成签到 ,获得积分10
20秒前
20秒前
20秒前
迪琛完成签到,获得积分20
21秒前
直率芮完成签到,获得积分10
21秒前
酷波er应助Robin采纳,获得10
23秒前
小马甲应助季末默相依采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057090
求助须知:如何正确求助?哪些是违规求助? 2713644
关于积分的说明 7436720
捐赠科研通 2358721
什么是DOI,文献DOI怎么找? 1249510
科研通“疑难数据库(出版商)”最低求助积分说明 607166
版权声明 596314