Axillary lymph node metastasis prediction by contrast-enhanced computed tomography images for breast cancer patients based on deep learning

乳腺癌 医学 计算机断层摄影术 淋巴结转移 放射科 对比度(视觉) 淋巴结 转移 癌症 人工智能 计算机科学 病理 内科学
作者
Ziyi Liu,Sijie Ni,Chunmei Yang,Weihao Sun,Deqing Huang,Hu Su,Jian Shu,Na Qin
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104715-104715 被引量:41
标识
DOI:10.1016/j.compbiomed.2021.104715
摘要

When doctors use contrast-enhanced computed tomography (CECT) images to predict the metastasis of axillary lymph nodes (ALN) for breast cancer patients, the prediction performance could be degraded by subjective factors such as experience, psychological factors, and degree of fatigue. This study aims to exploit efficient deep learning schemes to predict the metastasis of ALN automatically via CECT images. A new construction called deformable sampling module (DSM) was meticulously designed as a plug-and-play sampling module in the proposed deformable attention VGG19 (DA-VGG19). A dataset of 800 samples labeled from 800 CECT images of 401 breast cancer patients retrospectively enrolled in the last three years was adopted to train, validate, and test the deep convolutional neural network models. By comparing the accuracy, positive predictive value, negative predictive value, sensitivity and specificity indices, the performance of the proposed model is analyzed in detail. The best-performing DA-VGG19 model achieved an accuracy of 0.9088, which is higher than that of other classification neural networks. As such, the proposed intelligent diagnosis algorithm can provide doctors with daily diagnostic assistance and advice and reduce the workload of doctors. The source code mentioned in this article will be released later.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大顺发布了新的文献求助10
1秒前
宝物完成签到,获得积分10
1秒前
2秒前
WX完成签到,获得积分10
2秒前
欣喜皓轩发布了新的文献求助10
2秒前
3秒前
规方矩圆发布了新的文献求助10
3秒前
专注的语堂完成签到,获得积分10
3秒前
慕青应助好家伙采纳,获得10
3秒前
个性的南珍完成签到,获得积分10
3秒前
3秒前
3秒前
乐乐应助紧张的靖荷采纳,获得10
3秒前
kone发布了新的文献求助10
4秒前
舒服的尔蓝完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
qingli完成签到,获得积分10
4秒前
5秒前
5秒前
搜集达人应助清修采纳,获得10
5秒前
6秒前
6秒前
Sherry发布了新的文献求助10
6秒前
6秒前
36456657应助ghtsmile采纳,获得10
6秒前
6秒前
木易木土完成签到,获得积分10
6秒前
研友_ZAxQqn发布了新的文献求助10
7秒前
7秒前
大方的契完成签到,获得积分20
7秒前
8秒前
小马甲应助欢欢采纳,获得10
8秒前
8秒前
warithy发布了新的文献求助10
8秒前
罗明明完成签到,获得积分10
9秒前
zhaosangongzi发布了新的文献求助10
9秒前
所所应助小猫采纳,获得10
9秒前
科研通AI2S应助v啦啦啦啦采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163