Axillary lymph node metastasis prediction by contrast-enhanced computed tomography images for breast cancer patients based on deep learning

乳腺癌 医学 计算机断层摄影术 淋巴结转移 放射科 对比度(视觉) 淋巴结 转移 癌症 人工智能 计算机科学 病理 内科学
作者
Ziyi Liu,Sijie Ni,Chunmei Yang,Weihao Sun,Deqing Huang,Hu Su,Jian Shu,Na Qin
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104715-104715 被引量:41
标识
DOI:10.1016/j.compbiomed.2021.104715
摘要

When doctors use contrast-enhanced computed tomography (CECT) images to predict the metastasis of axillary lymph nodes (ALN) for breast cancer patients, the prediction performance could be degraded by subjective factors such as experience, psychological factors, and degree of fatigue. This study aims to exploit efficient deep learning schemes to predict the metastasis of ALN automatically via CECT images. A new construction called deformable sampling module (DSM) was meticulously designed as a plug-and-play sampling module in the proposed deformable attention VGG19 (DA-VGG19). A dataset of 800 samples labeled from 800 CECT images of 401 breast cancer patients retrospectively enrolled in the last three years was adopted to train, validate, and test the deep convolutional neural network models. By comparing the accuracy, positive predictive value, negative predictive value, sensitivity and specificity indices, the performance of the proposed model is analyzed in detail. The best-performing DA-VGG19 model achieved an accuracy of 0.9088, which is higher than that of other classification neural networks. As such, the proposed intelligent diagnosis algorithm can provide doctors with daily diagnostic assistance and advice and reduce the workload of doctors. The source code mentioned in this article will be released later.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助蓝天采纳,获得10
刚刚
ShellyMaya完成签到 ,获得积分10
刚刚
华仔应助蓝天采纳,获得10
刚刚
慕青应助蓝天采纳,获得10
刚刚
爆米花应助蓝天采纳,获得10
刚刚
隐形曼青应助勤恳寒安采纳,获得10
刚刚
xueshu发布了新的文献求助10
1秒前
诚心盼海发布了新的文献求助10
1秒前
专注的问寒应助wenjing采纳,获得20
1秒前
liong发布了新的文献求助10
2秒前
制冷剂完成签到 ,获得积分10
2秒前
小番茄发布了新的文献求助10
2秒前
企鹅发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
xima完成签到 ,获得积分0
5秒前
5秒前
牛牛完成签到,获得积分10
5秒前
所所应助sjdove采纳,获得10
6秒前
MOD发布了新的文献求助10
6秒前
7秒前
asdfzxcv应助冰可乐采纳,获得10
7秒前
7秒前
8秒前
Denmark发布了新的文献求助10
8秒前
FashionBoy应助英俊的白安采纳,获得10
8秒前
啦啦啦发布了新的文献求助10
8秒前
qiu发布了新的文献求助10
9秒前
云子完成签到,获得积分10
9秒前
9秒前
Peng完成签到,获得积分10
9秒前
10秒前
CipherSage应助蓝天采纳,获得10
10秒前
彭于晏应助蓝天采纳,获得10
10秒前
CipherSage应助蓝天采纳,获得10
10秒前
ddd发布了新的文献求助10
10秒前
天天快乐应助蓝天采纳,获得10
10秒前
彭于晏应助蓝天采纳,获得10
10秒前
所所应助蓝天采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790