Axillary lymph node metastasis prediction by contrast-enhanced computed tomography images for breast cancer patients based on deep learning

乳腺癌 医学 计算机断层摄影术 淋巴结转移 放射科 对比度(视觉) 淋巴结 转移 癌症 人工智能 计算机科学 病理 内科学
作者
Ziyi Liu,Sijie Ni,Chunmei Yang,Weihao Sun,Deqing Huang,Hu Su,Jian Shu,Na Qin
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104715-104715 被引量:35
标识
DOI:10.1016/j.compbiomed.2021.104715
摘要

When doctors use contrast-enhanced computed tomography (CECT) images to predict the metastasis of axillary lymph nodes (ALN) for breast cancer patients, the prediction performance could be degraded by subjective factors such as experience, psychological factors, and degree of fatigue. This study aims to exploit efficient deep learning schemes to predict the metastasis of ALN automatically via CECT images. A new construction called deformable sampling module (DSM) was meticulously designed as a plug-and-play sampling module in the proposed deformable attention VGG19 (DA-VGG19). A dataset of 800 samples labeled from 800 CECT images of 401 breast cancer patients retrospectively enrolled in the last three years was adopted to train, validate, and test the deep convolutional neural network models. By comparing the accuracy, positive predictive value, negative predictive value, sensitivity and specificity indices, the performance of the proposed model is analyzed in detail. The best-performing DA-VGG19 model achieved an accuracy of 0.9088, which is higher than that of other classification neural networks. As such, the proposed intelligent diagnosis algorithm can provide doctors with daily diagnostic assistance and advice and reduce the workload of doctors. The source code mentioned in this article will be released later.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Eternal完成签到 ,获得积分10
3秒前
FashionBoy应助小米采纳,获得10
4秒前
4秒前
niuniu发布了新的文献求助10
4秒前
huiqin应助跳跳虎采纳,获得10
5秒前
酷波er应助nineeee采纳,获得10
5秒前
5秒前
肥猫发布了新的文献求助10
5秒前
5秒前
7秒前
hll发布了新的文献求助10
8秒前
Ava应助林霄采纳,获得10
9秒前
花花公子完成签到,获得积分10
10秒前
脑洞疼应助shero采纳,获得30
10秒前
zzz完成签到,获得积分10
10秒前
张飞飞飞飞飞应助6633采纳,获得10
12秒前
Ray完成签到,获得积分10
13秒前
慕青应助uni采纳,获得30
13秒前
安静的ky完成签到,获得积分10
14秒前
李健春发布了新的文献求助10
14秒前
14秒前
跳跳虎完成签到,获得积分10
15秒前
深味i完成签到,获得积分10
16秒前
16秒前
17秒前
一株多肉发布了新的文献求助10
18秒前
19秒前
rslysywd发布了新的文献求助10
19秒前
20秒前
湘莲完成签到 ,获得积分10
20秒前
科研通AI6应助Lliu采纳,获得10
20秒前
23秒前
23秒前
25秒前
张飞飞飞飞飞应助杰瑞采纳,获得10
25秒前
25秒前
25秒前
26秒前
顾矜应助肥猫采纳,获得10
27秒前
酷酷依秋发布了新的文献求助10
27秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501262
求助须知:如何正确求助?哪些是违规求助? 4597591
关于积分的说明 14459908
捐赠科研通 4531076
什么是DOI,文献DOI怎么找? 2483103
邀请新用户注册赠送积分活动 1466734
关于科研通互助平台的介绍 1439367