A Tale of Twin Dependence: A New Multivariate Regression Model and an FGLS Estimator for Analyzing Outcomes With Network Dependence

估计员 结果(博弈论) 多元统计 指数随机图模型 计量经济学 多级模型 回归 统计 回归分析 计算机科学 数学 随机图 图形 理论计算机科学 数理经济学
作者
Weihua An
出处
期刊:Sociological Methods & Research [SAGE]
卷期号:52 (4): 1947-1980 被引量:1
标识
DOI:10.1177/00491241211031263
摘要

In this article, I present a new multivariate regression model for analyzing outcomes with network dependence. The model is capable to account for two types of outcome dependence including the mean dependence that allows the outcome to depend on selected features of a known dependence network and the error dependence that allows the outcome to be additionally correlated based on patterned connections in the dependence network (e.g., according to whether the ties are asymmetric, mutual, or triadic). For example, when predicting a group of students’ smoking status, the outcome can depend on the students’ positions in their friendship network and also be correlated among friends. I show that analyses ignoring the mean dependence can lead to severe bias in the estimated coefficients while analyses ignoring the error dependence can lead to inefficient inferences and failures in recognizing unmeasured social processes. I compare the new model with related models such as multilevel models, spatial regression models, and exponential random graph models and show their connections and differences. I propose a two-step, feasible generalized least squares estimator to estimate the model that is computationally fast and robust. Simulations show the validity of the new model (and the estimator) while four empirical examples demonstrate its versatility. Associated R package “fglsnet” is available for public use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
花田雨桐发布了新的文献求助10
1秒前
1秒前
小马甲应助lieditongxu采纳,获得10
1秒前
Jenny应助yan123采纳,获得10
2秒前
狂野的以珊完成签到,获得积分10
2秒前
2秒前
a1oft发布了新的文献求助10
3秒前
3秒前
3秒前
笨笨的不斜完成签到,获得积分10
3秒前
xtqgyy发布了新的文献求助10
3秒前
4秒前
Cat完成签到,获得积分0
4秒前
科研小菜完成签到,获得积分10
5秒前
江南烟雨如笙完成签到,获得积分10
5秒前
5秒前
stt关闭了stt文献求助
5秒前
6秒前
yangang发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
zhui发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
文献缺缺应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794