清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Discovery of Depression-Associated Factors From a Nationwide Population-Based Survey: Epidemiological Study Using Machine Learning and Network Analysis

多重共线性 机器学习 逻辑回归 特征选择 萧条(经济学) 人工智能 流行病学 人口 计算机科学 统计 医学 回归分析 数学 环境卫生 内科学 宏观经济学 经济
作者
Sang Min Nam,Thomas A. Peterson,Kyoung Yul Seo,Hyun Wook Han,Jee In Kang
出处
期刊:Journal of Medical Internet Research 卷期号:23 (6): e27344-e27344 被引量:15
标识
DOI:10.2196/27344
摘要

In epidemiological studies, finding the best subset of factors is challenging when the number of explanatory variables is large.Our study had two aims. First, we aimed to identify essential depression-associated factors using the extreme gradient boosting (XGBoost) machine learning algorithm from big survey data (the Korea National Health and Nutrition Examination Survey, 2012-2016). Second, we aimed to achieve a comprehensive understanding of multifactorial features in depression using network analysis.An XGBoost model was trained and tested to classify "current depression" and "no lifetime depression" for a data set of 120 variables for 12,596 cases. The optimal XGBoost hyperparameters were set by an automated machine learning tool (TPOT), and a high-performance sparse model was obtained by feature selection using the feature importance value of XGBoost. We performed statistical tests on the model and nonmodel factors using survey-weighted multiple logistic regression and drew a correlation network among factors. We also adopted statistical tests for the confounder or interaction effect of selected risk factors when it was suspected on the network.The XGBoost-derived depression model consisted of 18 factors with an area under the weighted receiver operating characteristic curve of 0.86. Two nonmodel factors could be found using the model factors, and the factors were classified into direct (P<.05) and indirect (P≥.05), according to the statistical significance of the association with depression. Perceived stress and asthma were the most remarkable risk factors, and urine specific gravity was a novel protective factor. The depression-factor network showed clusters of socioeconomic status and quality of life factors and suggested that educational level and sex might be predisposing factors. Indirect factors (eg, diabetes, hypercholesterolemia, and smoking) were involved in confounding or interaction effects of direct factors. Triglyceride level was a confounder of hypercholesterolemia and diabetes, smoking had a significant risk in females, and weight gain was associated with depression involving diabetes.XGBoost and network analysis were useful to discover depression-related factors and their relationships and can be applied to epidemiological studies using big survey data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴医生完成签到,获得积分10
4秒前
38秒前
梓歆完成签到 ,获得积分10
47秒前
Orange应助科研通管家采纳,获得10
1分钟前
cosine发布了新的文献求助10
1分钟前
1分钟前
cosine完成签到,获得积分10
1分钟前
1分钟前
脆饼同学发布了新的文献求助10
1分钟前
2分钟前
Zz完成签到 ,获得积分10
2分钟前
CodeCraft应助Kelsey采纳,获得10
2分钟前
2分钟前
3分钟前
xin发布了新的文献求助10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
超帅无血完成签到,获得积分10
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
3分钟前
啊哈哈发布了新的文献求助10
3分钟前
3分钟前
xin完成签到,获得积分10
3分钟前
4分钟前
5分钟前
CIXI发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
CIXI完成签到,获得积分10
5分钟前
Raunio完成签到,获得积分10
5分钟前
5分钟前
Kelsey发布了新的文献求助10
5分钟前
5分钟前
6分钟前
依依完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
坚强寻双发布了新的文献求助10
7分钟前
殷勤的晓夏完成签到,获得积分10
7分钟前
坚强寻双完成签到,获得积分20
7分钟前
8分钟前
Hello应助坚强寻双采纳,获得10
8分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434819
求助须知:如何正确求助?哪些是违规求助? 3032141
关于积分的说明 8944320
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492148
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685847