Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study

医学 乳腺癌 磁共振成像 淋巴结转移 转移 癌症 放射科 无线电技术 淋巴结 内科学 病理
作者
Yunfang Yu,Zifan He,Jie Ouyang,Yujie Tan,Yongjian Chen,Yang Gu,Luhui Mao,Wei Ren,Jue Wang,Lili Lin,Zhuo Wu,Jingwen Liu,Qiyun Ou,Qiugen Hu,Anlin Li,Kai Chen,Chenchen Li,Nian Lu,Xiaohong Li,Fengxi Su,Qiang Liu,Chuanmiao Xie,Herui Yao
出处
期刊:EBioMedicine [Elsevier]
卷期号:69: 103460-103460 被引量:156
标识
DOI:10.1016/j.ebiom.2021.103460
摘要

in current clinical practice, the standard evaluation for axillary lymph node (ALN) status in breast cancer has a low efficiency and is based on an invasive procedure that causes operative-associated complications in many patients. Therefore, we aimed to use machine learning techniques to develop an efficient preoperative magnetic resonance imaging (MRI) radiomics evaluation approach of ALN status and explore the association between radiomics and the tumor microenvironment in patients with early-stage invasive breast cancer.in this retrospective multicenter study, three independent cohorts of patients with breast cancer (n = 1,088) were used to develop and validate signatures predictive of ALN status. After applying the machine learning random forest algorithm to select the key preoperative MRI radiomic features, we used ALN and tumor radiomic features to develop the ALN-tumor radiomic signature for ALN status prediction by the support vector machine algorithm in 803 patients with breast cancer from Sun Yat-sen Memorial Hospital and Sun Yat-sen University Cancer Center (training cohort). By combining ALN and tumor radiomic features with corresponding clinicopathologic information, the multiomic signature was constructed in the training cohort. Next, the external validation cohort (n = 179) of patients from Shunde Hospital of Southern Medical University and Tungwah Hospital of Sun Yat-Sen University, and the prospective-retrospective validation cohort (n = 106) of patients treated with neoadjuvant chemotherapy in prospective phase 3 trials [NCT01503905], were included to evaluate the predictive value of the two signatures, and their predictive performance was assessed by the area under operating characteristic curve (AUC). This study was registered with ClinicalTrials.gov, number NCT04003558.the ALN-tumor radiomic signature for ALN status prediction comprising ALN and tumor radiomic features showed a high prediction quality with AUC of 0·88 in the training cohort, 0·87 in the external validation cohort, and 0·87 in the prospective-retrospective validation cohort. The multiomic signature incorporating tumor and lymph node MRI radiomics, clinical and pathologic characteristics, and molecular subtypes achieved better performance for ALN status prediction with AUCs of 0·90, 0·91, and 0·93 in the training cohort, the external validation cohort, and the prospective-retrospective validation cohort, respectively. Among patients who underwent neoadjuvant chemotherapy in the prospective-retrospective validation cohort, there were significant differences in the key radiomic features before and after neoadjuvant chemotherapy, especially in the gray-level dependence matrix features. Furthermore, there was an association between MRI radiomics and tumor microenvironment features including immune cells, long non-coding RNAs, and types of methylated sites. Interpretation this study presented a multiomic signature that could be preoperatively and conveniently used for identifying patients with ALN metastasis in early-stage invasive breast cancer. The multiomic signature exhibited powerful predictive ability and showed the prospect of extended application to tailor surgical management. Besides, significant changes in key radiomic features after neoadjuvant chemotherapy may be explained by changes in the tumor microenvironment, and the association between MRI radiomic features and tumor microenvironment features may reveal the potential biological underpinning of MRI radiomics.No funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
South朝484发布了新的文献求助10
刚刚
121212完成签到,获得积分10
1秒前
明亮的泥猴桃完成签到,获得积分10
6秒前
落林樾完成签到 ,获得积分10
6秒前
小蘑菇应助研友_sheryl采纳,获得10
7秒前
成就书雪完成签到,获得积分10
8秒前
8秒前
8秒前
yilin完成签到 ,获得积分10
9秒前
will214发布了新的文献求助10
10秒前
五月初夏完成签到,获得积分10
10秒前
超级的代柔完成签到,获得积分10
13秒前
xiaoyudianddd完成签到,获得积分10
13秒前
一切顺利发布了新的文献求助10
13秒前
wjn完成签到,获得积分10
15秒前
上官若男应助Dave采纳,获得10
16秒前
饱满绮波完成签到 ,获得积分10
16秒前
16秒前
风中沂完成签到 ,获得积分10
17秒前
TOPIC_BOX完成签到,获得积分10
17秒前
17秒前
哎嘿应助yyq采纳,获得10
18秒前
luoxiaoyan1927完成签到,获得积分10
18秒前
19秒前
研友_VZG7GZ应助李昕123采纳,获得10
19秒前
19秒前
19秒前
九尾狐发布了新的文献求助10
20秒前
hhc发布了新的文献求助200
20秒前
Dave发布了新的文献求助10
21秒前
21秒前
kiki发布了新的文献求助10
22秒前
汉堡包应助简单如萱采纳,获得10
24秒前
tion66发布了新的文献求助10
24秒前
田様应助狂野抽屉采纳,获得10
26秒前
公冶君浩发布了新的文献求助10
26秒前
27秒前
哎嘿应助medlive2020采纳,获得10
28秒前
28秒前
Fiona完成签到 ,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148107
求助须知:如何正确求助?哪些是违规求助? 2799178
关于积分的说明 7833767
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628099
版权声明 601655