DeePROG: Deep Attention-Based Model for Diseased Gene Prognosis by Fusing Multi-Omics Data

计算生物学 背景(考古学) 机器学习 深度学习 杠杆(统计) 计算机科学 人工智能 数据挖掘 生物 生物信息学 古生物学
作者
Pratik Dutta,Aditya Prakash Patra,Sriparna Saha
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2770-2781 被引量:9
标识
DOI:10.1109/tcbb.2021.3090302
摘要

An in-depth exploration of gene prognosis using different methodologies aids in understanding various biological regulations of genes in disease pathobiology and molecular functions. Interpreting gene functions at biological and molecular levels remains a daunting yet crucial task in domains such as drug design, personalized medicine, and next-generation diagnostics. Recent advancements in omics technologies have produced diverse heterogeneous genomic datasets like micro-array gene expression, miRNA expression, DNA sequence, 3D structures, which are significant resources for understanding the gene functions. In this paper, we propose a novel self-attention based deep multi-modal model, named DeePROG, for the prognosis of disease affected genes based on heterogeneous omics data. We use three NCBI datasets covering three modalities, namely gene expression profile, the underlying DNA sequence, and the 3D protein structures. To extract useful features from each modality, we develop several context-specific deep learning models. Besides, we develop three attention-based deep bi-modal architectures along with DeePROG to leverage the prognosis of the underlying biomedical data. We assess the performance of the models' in terms of computational assessment of function annotation (CAFA2) metrics. Moreover, we analyze the results in terms of receiver operating characteristics (ROC) curve in high-class imbalance data setting and perform statistical significance tests in terms of Welch's t-test. Experiment results show that DeePROG significantly outperforms baseline models across in terms of performance metrics. The source code and all preprocessed datasets used in this study are available at https://github.com/duttaprat/DeePROG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
进击的PhD完成签到,获得积分10
刚刚
1秒前
单纯无声完成签到 ,获得积分10
1秒前
3秒前
西西弗斯完成签到,获得积分10
5秒前
李卓航发布了新的文献求助10
7秒前
领导范儿应助甜野采纳,获得10
7秒前
7秒前
9秒前
11秒前
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
好好应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
好好应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
13秒前
好好应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
dew应助科研通管家采纳,获得50
13秒前
FU发布了新的文献求助10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716