DeePROG: Deep Attention-Based Model for Diseased Gene Prognosis by Fusing Multi-Omics Data

计算生物学 背景(考古学) 机器学习 深度学习 杠杆(统计) 计算机科学 人工智能 数据挖掘 生物 生物信息学 古生物学
作者
Pratik Dutta,Aditya Prakash Patra,Sriparna Saha
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2770-2781 被引量:9
标识
DOI:10.1109/tcbb.2021.3090302
摘要

An in-depth exploration of gene prognosis using different methodologies aids in understanding various biological regulations of genes in disease pathobiology and molecular functions. Interpreting gene functions at biological and molecular levels remains a daunting yet crucial task in domains such as drug design, personalized medicine, and next-generation diagnostics. Recent advancements in omics technologies have produced diverse heterogeneous genomic datasets like micro-array gene expression, miRNA expression, DNA sequence, 3D structures, which are significant resources for understanding the gene functions. In this paper, we propose a novel self-attention based deep multi-modal model, named DeePROG, for the prognosis of disease affected genes based on heterogeneous omics data. We use three NCBI datasets covering three modalities, namely gene expression profile, the underlying DNA sequence, and the 3D protein structures. To extract useful features from each modality, we develop several context-specific deep learning models. Besides, we develop three attention-based deep bi-modal architectures along with DeePROG to leverage the prognosis of the underlying biomedical data. We assess the performance of the models' in terms of computational assessment of function annotation (CAFA2) metrics. Moreover, we analyze the results in terms of receiver operating characteristics (ROC) curve in high-class imbalance data setting and perform statistical significance tests in terms of Welch's t-test. Experiment results show that DeePROG significantly outperforms baseline models across in terms of performance metrics. The source code and all preprocessed datasets used in this study are available at https://github.com/duttaprat/DeePROG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happy_zz发布了新的文献求助10
刚刚
刚刚
共享精神应助Daisy采纳,获得10
1秒前
1秒前
hahhh7发布了新的文献求助10
2秒前
2秒前
山有木兮发布了新的文献求助10
2秒前
咕咕咕完成签到,获得积分10
2秒前
2秒前
二二完成签到,获得积分20
2秒前
神勇的豁发布了新的文献求助10
3秒前
传奇3应助刘小花采纳,获得10
3秒前
为为的小耳朵完成签到 ,获得积分10
3秒前
芙莉莲发布了新的文献求助10
3秒前
cheng发布了新的文献求助10
3秒前
研友_rLmNXn发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助你我战采纳,获得30
4秒前
来福萨克斯完成签到 ,获得积分10
4秒前
汉堡包应助thousandlong采纳,获得10
4秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
LWERTH完成签到,获得积分10
7秒前
7秒前
Li发布了新的文献求助10
7秒前
麻辣小丁完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
悦风发布了新的文献求助10
8秒前
8秒前
8秒前
靓丽的寒蕾完成签到,获得积分10
8秒前
百杜发布了新的文献求助10
8秒前
Othinus发布了新的文献求助10
8秒前
领导范儿应助研友_rLmNXn采纳,获得10
8秒前
荔枝麻花发布了新的文献求助20
8秒前
ljl发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494