DeePROG: Deep Attention-Based Model for Diseased Gene Prognosis by Fusing Multi-Omics Data

计算生物学 背景(考古学) 机器学习 深度学习 杠杆(统计) 计算机科学 人工智能 数据挖掘 生物 生物信息学 古生物学
作者
Pratik Dutta,Aditya Prakash Patra,Sriparna Saha
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2770-2781 被引量:9
标识
DOI:10.1109/tcbb.2021.3090302
摘要

An in-depth exploration of gene prognosis using different methodologies aids in understanding various biological regulations of genes in disease pathobiology and molecular functions. Interpreting gene functions at biological and molecular levels remains a daunting yet crucial task in domains such as drug design, personalized medicine, and next-generation diagnostics. Recent advancements in omics technologies have produced diverse heterogeneous genomic datasets like micro-array gene expression, miRNA expression, DNA sequence, 3D structures, which are significant resources for understanding the gene functions. In this paper, we propose a novel self-attention based deep multi-modal model, named DeePROG, for the prognosis of disease affected genes based on heterogeneous omics data. We use three NCBI datasets covering three modalities, namely gene expression profile, the underlying DNA sequence, and the 3D protein structures. To extract useful features from each modality, we develop several context-specific deep learning models. Besides, we develop three attention-based deep bi-modal architectures along with DeePROG to leverage the prognosis of the underlying biomedical data. We assess the performance of the models' in terms of computational assessment of function annotation (CAFA2) metrics. Moreover, we analyze the results in terms of receiver operating characteristics (ROC) curve in high-class imbalance data setting and perform statistical significance tests in terms of Welch's t-test. Experiment results show that DeePROG significantly outperforms baseline models across in terms of performance metrics. The source code and all preprocessed datasets used in this study are available at https://github.com/duttaprat/DeePROG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁梦发布了新的文献求助10
刚刚
qqqq发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
陈豆豆发布了新的文献求助10
2秒前
HanruiWang完成签到,获得积分10
3秒前
4秒前
4秒前
天天发布了新的文献求助10
5秒前
6秒前
ZDSHI发布了新的文献求助100
6秒前
qqqq完成签到,获得积分20
8秒前
youngyang完成签到 ,获得积分10
8秒前
柒tt完成签到 ,获得积分10
9秒前
9秒前
ztt发布了新的文献求助10
10秒前
10秒前
12秒前
我是老大应助QYSF222采纳,获得10
12秒前
量子星尘发布了新的文献求助10
14秒前
充电宝应助wt采纳,获得10
14秒前
科研通AI6.1应助乐观秋尽采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
丑丑阿发布了新的文献求助10
16秒前
11发布了新的文献求助10
17秒前
17秒前
17秒前
贝贝发布了新的文献求助10
18秒前
ztt完成签到,获得积分10
20秒前
20秒前
田様应助迷途羔羊采纳,获得10
21秒前
memedaaaah发布了新的文献求助10
22秒前
黑森林发布了新的文献求助10
23秒前
SHC完成签到,获得积分10
25秒前
吱嗷完成签到,获得积分20
25秒前
量子星尘发布了新的文献求助10
27秒前
轨迹应助消摇采纳,获得200
27秒前
酷波er应助忧伤的二锅头采纳,获得10
28秒前
天天发布了新的文献求助10
28秒前
Leah_7完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382