DeePROG: Deep Attention-Based Model for Diseased Gene Prognosis by Fusing Multi-Omics Data

计算生物学 背景(考古学) 机器学习 深度学习 杠杆(统计) 计算机科学 人工智能 数据挖掘 生物 生物信息学 古生物学
作者
Pratik Dutta,Aditya Prakash Patra,Sriparna Saha
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2770-2781 被引量:9
标识
DOI:10.1109/tcbb.2021.3090302
摘要

An in-depth exploration of gene prognosis using different methodologies aids in understanding various biological regulations of genes in disease pathobiology and molecular functions. Interpreting gene functions at biological and molecular levels remains a daunting yet crucial task in domains such as drug design, personalized medicine, and next-generation diagnostics. Recent advancements in omics technologies have produced diverse heterogeneous genomic datasets like micro-array gene expression, miRNA expression, DNA sequence, 3D structures, which are significant resources for understanding the gene functions. In this paper, we propose a novel self-attention based deep multi-modal model, named DeePROG, for the prognosis of disease affected genes based on heterogeneous omics data. We use three NCBI datasets covering three modalities, namely gene expression profile, the underlying DNA sequence, and the 3D protein structures. To extract useful features from each modality, we develop several context-specific deep learning models. Besides, we develop three attention-based deep bi-modal architectures along with DeePROG to leverage the prognosis of the underlying biomedical data. We assess the performance of the models' in terms of computational assessment of function annotation (CAFA2) metrics. Moreover, we analyze the results in terms of receiver operating characteristics (ROC) curve in high-class imbalance data setting and perform statistical significance tests in terms of Welch's t-test. Experiment results show that DeePROG significantly outperforms baseline models across in terms of performance metrics. The source code and all preprocessed datasets used in this study are available at https://github.com/duttaprat/DeePROG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天黑黑发布了新的文献求助10
1秒前
lailai007发布了新的文献求助10
1秒前
Barium发布了新的文献求助10
1秒前
1秒前
luk发布了新的文献求助10
1秒前
ding应助小猪采纳,获得10
2秒前
洁净笙完成签到,获得积分20
2秒前
爆米花应助紫苏桃子姜采纳,获得30
2秒前
2秒前
SciGPT应助jie采纳,获得10
2秒前
3秒前
3秒前
人间烟火完成签到,获得积分10
3秒前
Orange应助饱满芷卉采纳,获得10
3秒前
小耿完成签到 ,获得积分20
3秒前
呼延初瑶完成签到 ,获得积分10
3秒前
求知小生发布了新的文献求助10
3秒前
4秒前
好久不见发布了新的文献求助10
4秒前
4秒前
opticalff完成签到,获得积分10
5秒前
5秒前
曲雪一发布了新的文献求助10
5秒前
猫和老鼠完成签到,获得积分10
5秒前
lla完成签到,获得积分10
5秒前
zj完成签到,获得积分10
6秒前
6秒前
今后应助ST采纳,获得10
6秒前
九九发布了新的文献求助10
6秒前
7秒前
Lucas应助木木采纳,获得10
7秒前
HongMou完成签到,获得积分10
7秒前
7秒前
8秒前
风中雨筠发布了新的文献求助10
8秒前
liushuang发布了新的文献求助10
8秒前
9秒前
时暮辰发布了新的文献求助10
9秒前
Ray完成签到,获得积分10
9秒前
Agnes发布了新的文献求助10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588071
求助须知:如何正确求助?哪些是违规求助? 4671128
关于积分的说明 14785936
捐赠科研通 4624341
什么是DOI,文献DOI怎么找? 2531566
邀请新用户注册赠送积分活动 1500214
关于科研通互助平台的介绍 1468207