DeePROG: Deep Attention-Based Model for Diseased Gene Prognosis by Fusing Multi-Omics Data

计算生物学 背景(考古学) 机器学习 深度学习 杠杆(统计) 计算机科学 人工智能 数据挖掘 生物 生物信息学 古生物学
作者
Pratik Dutta,Aditya Prakash Patra,Sriparna Saha
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2770-2781 被引量:5
标识
DOI:10.1109/tcbb.2021.3090302
摘要

An in-depth exploration of gene prognosis using different methodologies aids in understanding various biological regulations of genes in disease pathobiology and molecular functions. Interpreting gene functions at biological and molecular levels remains a daunting yet crucial task in domains such as drug design, personalized medicine, and next-generation diagnostics. Recent advancements in omics technologies have produced diverse heterogeneous genomic datasets like micro-array gene expression, miRNA expression, DNA sequence, 3D structures, which are significant resources for understanding the gene functions. In this paper, we propose a novel self-attention based deep multi-modal model, named DeePROG, for the prognosis of disease affected genes based on heterogeneous omics data. We use three NCBI datasets covering three modalities, namely gene expression profile, the underlying DNA sequence, and the 3D protein structures. To extract useful features from each modality, we develop several context-specific deep learning models. Besides, we develop three attention-based deep bi-modal architectures along with DeePROG to leverage the prognosis of the underlying biomedical data. We assess the performance of the models' in terms of computational assessment of function annotation (CAFA2) metrics. Moreover, we analyze the results in terms of receiver operating characteristics (ROC) curve in high-class imbalance data setting and perform statistical significance tests in terms of Welch's t-test. Experiment results show that DeePROG significantly outperforms baseline models across in terms of performance metrics. The source code and all preprocessed datasets used in this study are available at https://github.com/duttaprat/DeePROG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Harlotte发布了新的文献求助10
3秒前
3秒前
shusz完成签到,获得积分10
3秒前
猫丫发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
袁大头发布了新的文献求助10
7秒前
7秒前
共享精神应助风中刺猬采纳,获得10
8秒前
8秒前
天天快乐应助liangzhao采纳,获得10
8秒前
LY020201发布了新的文献求助10
9秒前
Felicity完成签到 ,获得积分10
12秒前
JamesPei应助Self采纳,获得10
12秒前
崇林同学发布了新的文献求助30
12秒前
湘文完成签到 ,获得积分10
12秒前
14秒前
14秒前
研友_Lmbz1n完成签到,获得积分10
14秒前
小菜完成签到 ,获得积分10
15秒前
16秒前
充电宝应助谦让的小姜采纳,获得10
16秒前
agent完成签到 ,获得积分10
16秒前
17秒前
Jessie完成签到 ,获得积分10
18秒前
www关闭了www文献求助
19秒前
风中刺猬发布了新的文献求助10
19秒前
甜蜜匕发布了新的文献求助10
20秒前
清脆慕山发布了新的文献求助10
21秒前
22秒前
风中刺猬完成签到,获得积分10
25秒前
iNk应助小明采纳,获得10
26秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
27秒前
28秒前
28秒前
JamesPei应助22222采纳,获得10
29秒前
英俊的铭应助科研小锄头采纳,获得10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046