DeePROG: Deep Attention-Based Model for Diseased Gene Prognosis by Fusing Multi-Omics Data

计算生物学 背景(考古学) 机器学习 深度学习 杠杆(统计) 计算机科学 人工智能 数据挖掘 生物 生物信息学 古生物学
作者
Pratik Dutta,Aditya Prakash Patra,Sriparna Saha
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2770-2781 被引量:7
标识
DOI:10.1109/tcbb.2021.3090302
摘要

An in-depth exploration of gene prognosis using different methodologies aids in understanding various biological regulations of genes in disease pathobiology and molecular functions. Interpreting gene functions at biological and molecular levels remains a daunting yet crucial task in domains such as drug design, personalized medicine, and next-generation diagnostics. Recent advancements in omics technologies have produced diverse heterogeneous genomic datasets like micro-array gene expression, miRNA expression, DNA sequence, 3D structures, which are significant resources for understanding the gene functions. In this paper, we propose a novel self-attention based deep multi-modal model, named DeePROG, for the prognosis of disease affected genes based on heterogeneous omics data. We use three NCBI datasets covering three modalities, namely gene expression profile, the underlying DNA sequence, and the 3D protein structures. To extract useful features from each modality, we develop several context-specific deep learning models. Besides, we develop three attention-based deep bi-modal architectures along with DeePROG to leverage the prognosis of the underlying biomedical data. We assess the performance of the models' in terms of computational assessment of function annotation (CAFA2) metrics. Moreover, we analyze the results in terms of receiver operating characteristics (ROC) curve in high-class imbalance data setting and perform statistical significance tests in terms of Welch's t-test. Experiment results show that DeePROG significantly outperforms baseline models across in terms of performance metrics. The source code and all preprocessed datasets used in this study are available at https://github.com/duttaprat/DeePROG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵的羽毛完成签到,获得积分20
1秒前
qqqqqq应助淡淡代玉采纳,获得10
1秒前
冷酷向薇完成签到,获得积分10
1秒前
可乐不了完成签到 ,获得积分10
3秒前
爆米花应助太空工程师采纳,获得10
3秒前
3秒前
阿盛发布了新的文献求助10
4秒前
aa完成签到,获得积分10
5秒前
5秒前
feb完成签到,获得积分10
5秒前
5秒前
6秒前
健忘捕完成签到,获得积分10
7秒前
yx_cheng应助罗浩采纳,获得30
8秒前
机智谷蕊发布了新的文献求助10
8秒前
明天见发布了新的文献求助10
8秒前
afengya发布了新的文献求助10
9秒前
10秒前
11秒前
天意如此完成签到,获得积分10
11秒前
土豪的大树完成签到,获得积分10
11秒前
三千港完成签到,获得积分10
12秒前
fuxiaobao发布了新的文献求助10
12秒前
12秒前
稀里糊涂完成签到 ,获得积分10
13秒前
汉堡包应助yyyy采纳,获得10
14秒前
多情高丽完成签到 ,获得积分10
14秒前
刺猬崔发布了新的文献求助20
15秒前
mashichuang发布了新的文献求助10
16秒前
正直冬日发布了新的文献求助10
16秒前
hahahaman完成签到,获得积分10
17秒前
Yau完成签到,获得积分10
19秒前
mawenxing完成签到,获得积分10
19秒前
hzNB完成签到,获得积分10
20秒前
热心的诗双完成签到 ,获得积分10
21秒前
一诺相许完成签到 ,获得积分10
21秒前
21秒前
摩登兄弟完成签到,获得积分10
22秒前
li发布了新的文献求助10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997769
求助须知:如何正确求助?哪些是违规求助? 3537294
关于积分的说明 11271231
捐赠科研通 3276455
什么是DOI,文献DOI怎么找? 1807040
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982