里程计
卡尔曼滤波器
惯性测量装置
计算
计算机科学
扩展卡尔曼滤波器
激光雷达
特征(语言学)
迭代函数
同时定位和映射
计算机视觉
人工智能
维数(图论)
算法
数学
机器人
移动机器人
遥感
地理
语言学
数学分析
哲学
纯数学
出处
期刊:IEEE robotics and automation letters
日期:2021-03-08
卷期号:6 (2): 3317-3324
被引量:372
标识
DOI:10.1109/lra.2021.3064227
摘要
This letter presents a computationally efficient and robust LiDAR-inertial odometry framework. We fuse LiDAR feature points with IMU data using a tightly-coupled iterated extended Kalman filter to allow robust navigation in fast-motion, noisy or cluttered environments where degeneration occurs. To lower the computation load in the presence of a large number of measurements, we present a new formula to compute the Kalman gain. The new formula has computation load depending on the state dimension instead of the measurement dimension. The proposed method and its implementation are tested in various indoor and outdoor environments. In all tests, our method produces reliable navigation results in real-time: running on a quadrotor onboard computer, it fuses more than 1200 effective feature points in a scan and completes all iterations of an iEKF step within 25 ms. Our codes are open-sourced on Github. 1
科研通智能强力驱动
Strongly Powered by AbleSci AI