Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI

脑-机接口 计算机科学 异步通信 算法 均衡(音频) 人工智能 脑电图 语音识别 窗口(计算) 模式识别(心理学) 电信 神经科学 心理学 解码方法 操作系统
作者
Chen Yang,Xinyi Yan,Yijun Wang,Yonghao Chen,Hongxin Zhang,Xiaorong Gao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460b7-0460b7 被引量:16
标识
DOI:10.1088/1741-2552/ac127f
摘要

Abstract Objective. Asynchronous brain-computer interfaces (BCIs) show significant advantages in many practical application scenarios. Compared with the rapid development of synchronous BCIs technology, the progress of asynchronous BCI research, in terms of containing multiple targets and training-free detection, is still relatively slow. In order to improve the practicability of the BCI, a spatio-temporal equalization multi-window algorithm (STE-MW) was proposed for asynchronous detection of steady-state visual evoked potential (SSVEP) without the need for acquiring calibration data. Approach. The algorithm used SIE strategy to intercept EEG signals of different lengths through multiple stacked time windows and statistical decisions-making based on Bayesian risk decision-making. Different from the traditional asynchronous algorithms based on the ‘non-control state detection’ methods, this algorithm was based on the ‘statistical inspection-rejection decision’ mode and did not require a separate classification of non-control states, so it can be effectively applied to detections for large-scale candidates. Main results. Online experimental results involving 14 healthy subjects showed that, in the continuously input experiments of 40 targets, the algorithm achieved the average recognition accuracy of 97.2 ± 2.6 % and the average information transfer rate (ITR) of 106.3 ± 32.0 bits mi n 1 . At the same time, the average false alarm rate in the 240 s resting state test was 0.607 ± 0.602 mi n 1 . In the free spelling experiments involving patients with severe amyotrophic lateral sclerosis, the subjects achieved an accuracy of 92.7% and an average ITR of 43.65 bits min −1 in two free spelling experiments. Significance. This algorithm can achieve high-performance, high-precision, and asynchronous detection of SSVEP signals with low algorithm complexity and false alarm rate under multi-targets and training-free conditions, which is helpful for the development of asynchronous BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南瓜完成签到 ,获得积分10
刚刚
eric曾完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
韦威风完成签到,获得积分10
3秒前
请叫我风吹麦浪应助cc采纳,获得30
3秒前
所所应助Ll采纳,获得10
3秒前
阳光的道消完成签到,获得积分10
4秒前
4秒前
4秒前
豌豆射手完成签到,获得积分10
5秒前
5秒前
桑桑发布了新的文献求助10
5秒前
领导范儿应助幸福胡萝卜采纳,获得10
6秒前
明理的小甜瓜完成签到,获得积分10
7秒前
7秒前
33333完成签到,获得积分20
7秒前
7秒前
7秒前
756发布了新的文献求助10
7秒前
8秒前
科研通AI5应助GHOST采纳,获得10
8秒前
8秒前
罗实完成签到,获得积分10
9秒前
科研通AI2S应助k7采纳,获得10
9秒前
9秒前
粱自中完成签到,获得积分10
9秒前
luca发布了新的文献求助30
9秒前
9秒前
10秒前
唉呦嘿完成签到,获得积分10
10秒前
dan1029发布了新的文献求助10
11秒前
mc完成签到,获得积分10
11秒前
12秒前
zhaoyue完成签到,获得积分20
12秒前
科研通AI2S应助neil采纳,获得10
13秒前
宇宙无敌完成签到 ,获得积分10
14秒前
SY发布了新的文献求助10
14秒前
Lucas应助小田采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762