In-situ reduced non-oxidized copper nanoparticles in nanocomposites with extraordinary high electrical and thermal conductivity

材料科学 纳米复合材料 纳米颗粒 放电等离子烧结 化学工程 复合材料 烧结 纳米技术 冶金 工程类
作者
C. Muhammed Ajmal,Aby Paul Benny,Wonjae Jeon,Seong-Kyun Kim,Sung Wng Kim,Seunghyun Baik
出处
期刊:Materials Today [Elsevier]
卷期号:48: 59-71 被引量:31
标识
DOI:10.1016/j.mattod.2021.04.012
摘要

Copper has received considerable attention for conductive nanocomposites as an alternative to costly silver or gold. However, practical application has been impeded by its susceptibility to oxidation in air. Here we report a novel scalable synthesis method of non-oxidized copper nanoparticles (InSituCuNPs) by pre-mixing and in-situ reducing copper formate-(butylamine-octylamine) complex inside soft epoxy matrix. The solid–liquid phase change of the copper formate complex, during the nanocomposite spark-plasma-sintering process, promotes uniform dispersion. Even the outermost atoms of InSituCuNPs are not oxidized since they are surrounded by the thick matrix polymer as soon as in-situ reduced into metallic copper, resulting in high electrical (15,048 Scm−1) and thermal (28.4 Wm−1K−1) conductivities of the nanocomposite. Furthermore, a small addition of 1-dimensional carbon nanotubes decorated with 0-dimensional copper nanoparticles (<4 nm), together with bi-functionalization, dramatically enhances connectivity between the InSituCuNPs, resulting in air-stable and record-high 31,974 Scm−1 and 74.1 Wm−1K−1 for isotropic copper-based nanocomposites. The nanocomposite also provides a small thermal resistance (2.64 × 10−6 m2KW−1) and excellent heat dissipation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的秋莲完成签到,获得积分10
1秒前
Ehgnix完成签到,获得积分10
1秒前
CodeCraft应助Nicole采纳,获得10
1秒前
2秒前
2秒前
宋宋完成签到,获得积分10
3秒前
就好发布了新的文献求助10
3秒前
SZS完成签到,获得积分20
4秒前
JamesPei应助仙人刺采纳,获得10
4秒前
iNk应助西安浴日光能赵炜采纳,获得10
4秒前
方赫然应助Triptolide采纳,获得10
5秒前
十一发布了新的文献求助10
6秒前
春锅锅完成签到,获得积分10
6秒前
6秒前
7秒前
mhl11应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
123应助科研通管家采纳,获得50
7秒前
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
温柔画笔应助福桃采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
学术疯子发布了新的文献求助10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
9秒前
linxiangFYYY发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
燃烧的火柴完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311581
求助须知:如何正确求助?哪些是违规求助? 2944368
关于积分的说明 8518562
捐赠科研通 2619731
什么是DOI,文献DOI怎么找? 1432529
科研通“疑难数据库(出版商)”最低求助积分说明 664684
邀请新用户注册赠送积分活动 649949