Pavement crack detection using hessian structure propagation

曲线坐标 黑森矩阵 断裂力学 垂直的 计算机科学 噪音(视频) 比例(比率) 特征(语言学) 点(几何) 结构工程
作者
Qi Chen,Yuchun Huang,Hui Sun,Weihong Huang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:49: 101303-101303 被引量:6
标识
DOI:10.1016/j.aei.2021.101303
摘要

Pavement images are widely used in transportation agencies to detect cracks accurately so that the best proper plans of maintenance and rehabilitation could be made. Although crack in a pavement image is perceived because the intensity of crack pixels contrasts with that of the pavement background, there are still challenges in distinguishing cracks from complex textures, heavy noise, and interference. Unlike the intensity or the first-order edge feature of crack, this paper proposes the second-order directional derivative to characterize the directional valley-like structure of crack. The multi-scale Hessian structure is first proposed to analytically adapt to the direction and valley of cracking in the Gaussian scale space. The crack structure field is then proposed to mimic the curvilinear propagation of crack in the local area, which is iteratively applied at every point of the crack curve to infer the crack structure at the gaps and intersections. Finally, the most salient centerline of the crack within its curvilinear buffer is exactly located with non-maximum suppression along the perpendicular direction of crack. The experiments on large numbers of images of various crack types and with diverse conditions of noise, illumination and interference demonstrate the proposed method can detect pavement cracks well with an average Precision, Recall and F-measure of 92.4%, 88.4%, and 90.4% respectively. Also, the proposed method achieves the best performance of crack detection on the benchmark datasets among methods that also require no training and publicly offer the detection results for every image.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bewh应助个性的莛采纳,获得10
1秒前
独特伟泽发布了新的文献求助10
1秒前
1秒前
田様应助听话的梦之采纳,获得10
4秒前
5秒前
小二郎应助zz采纳,获得10
7秒前
落井下石的哲学家完成签到,获得积分10
8秒前
ding应助Ade采纳,获得10
8秒前
quzhenzxxx完成签到 ,获得积分10
9秒前
科研通AI2S应助FartKing采纳,获得30
10秒前
11秒前
13秒前
luckysame完成签到,获得积分10
14秒前
15秒前
17秒前
幼萱完成签到,获得积分10
17秒前
良辰发布了新的文献求助10
17秒前
TT2022发布了新的文献求助10
18秒前
18秒前
tmrrr完成签到,获得积分10
18秒前
XIN完成签到,获得积分20
18秒前
11_aa完成签到,获得积分10
19秒前
liulongchao发布了新的文献求助10
19秒前
祺祺关注了科研通微信公众号
19秒前
19秒前
zy发布了新的文献求助10
20秒前
1111A完成签到,获得积分10
22秒前
sukasuka发布了新的文献求助10
22秒前
23秒前
所所应助王幻露采纳,获得10
24秒前
zy完成签到,获得积分10
26秒前
光电很亮完成签到,获得积分10
26秒前
传奇3应助lilin采纳,获得10
28秒前
29秒前
Wwhy发布了新的文献求助10
30秒前
32秒前
34秒前
李半斤发布了新的文献求助10
34秒前
35秒前
37秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809513
关于积分的说明 7882468
捐赠科研通 2468017
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943