已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pavement crack detection using hessian structure propagation

曲线坐标 黑森矩阵 断裂力学 垂直的 计算机科学 噪音(视频) 比例(比率) 特征(语言学) 点(几何) 结构工程
作者
Qi Chen,Yuchun Huang,Hui Sun,Weihong Huang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:49: 101303-101303 被引量:6
标识
DOI:10.1016/j.aei.2021.101303
摘要

Pavement images are widely used in transportation agencies to detect cracks accurately so that the best proper plans of maintenance and rehabilitation could be made. Although crack in a pavement image is perceived because the intensity of crack pixels contrasts with that of the pavement background, there are still challenges in distinguishing cracks from complex textures, heavy noise, and interference. Unlike the intensity or the first-order edge feature of crack, this paper proposes the second-order directional derivative to characterize the directional valley-like structure of crack. The multi-scale Hessian structure is first proposed to analytically adapt to the direction and valley of cracking in the Gaussian scale space. The crack structure field is then proposed to mimic the curvilinear propagation of crack in the local area, which is iteratively applied at every point of the crack curve to infer the crack structure at the gaps and intersections. Finally, the most salient centerline of the crack within its curvilinear buffer is exactly located with non-maximum suppression along the perpendicular direction of crack. The experiments on large numbers of images of various crack types and with diverse conditions of noise, illumination and interference demonstrate the proposed method can detect pavement cracks well with an average Precision, Recall and F-measure of 92.4%, 88.4%, and 90.4% respectively. Also, the proposed method achieves the best performance of crack detection on the benchmark datasets among methods that also require no training and publicly offer the detection results for every image.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极2023完成签到 ,获得积分0
3秒前
老鼠爱吃fish完成签到,获得积分10
4秒前
orixero应助认真路人采纳,获得10
7秒前
Owen应助Aurora采纳,获得10
13秒前
SciKid524完成签到 ,获得积分10
22秒前
24秒前
孤芳自赏IrisKing完成签到 ,获得积分10
25秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得20
29秒前
MchemG应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
Xiaoxiao应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得30
29秒前
Jamie完成签到,获得积分10
35秒前
37秒前
dique3hao完成签到 ,获得积分10
37秒前
阔达的盼秋完成签到,获得积分10
38秒前
42秒前
小叉叉搞快点完成签到 ,获得积分10
44秒前
51秒前
佳敏完成签到 ,获得积分10
55秒前
Aurora发布了新的文献求助10
57秒前
Aurora完成签到,获得积分10
1分钟前
1分钟前
爱听歌的盼柳完成签到 ,获得积分10
1分钟前
Hugo完成签到,获得积分10
1分钟前
柚子完成签到 ,获得积分10
1分钟前
冷傲的灯泡应助Jmike采纳,获得10
1分钟前
深情安青应助juno采纳,获得10
1分钟前
李爱国应助沁沁沁采纳,获得10
1分钟前
清爽冬莲完成签到 ,获得积分10
1分钟前
DDL完成签到,获得积分10
1分钟前
1分钟前
懒癌晚期完成签到,获得积分10
1分钟前
高大凌寒发布了新的文献求助200
1分钟前
1分钟前
天真之桃完成签到,获得积分10
1分钟前
1分钟前
juno发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671167
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778325
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760473
科研通“疑难数据库(出版商)”最低求助积分说明 735962