Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis

环境科学 森林退化 温带森林 遥感 森林砍伐(计算机科学) 亚马逊雨林 温带雨林 采样(信号处理) 减少毁林和森林退化造成的排放 温带气候 卫星图像 土地退化 地理 气候变化 计算机科学 土地利用 地质学 生态学 碳储量 生态系统 程序设计语言 海洋学 滤波器(信号处理) 生物 计算机视觉
作者
Shijuan Chen,Curtis E. Woodcock,Eric L. Bullock,Paulo Arévalo,Paata Torchinava,Siqi Peng,Pontus Olofsson
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:265: 112648-112648 被引量:91
标识
DOI:10.1016/j.rse.2021.112648
摘要

Current estimates of forest degradation are associated with large uncertainties. However, recent advancements in the availability of remote sensing data (e.g., the free data policies of the Landsat and Sentinel Programs) and cloud computing platforms (e.g., Google Earth Engine (GEE)) provide new opportunities for monitoring forest degradation. Several recent studies focus on monitoring forest degradation in the tropics, particularly the Amazon, but there are less studies of temperate forest degradation. Compared to the Amazon, temperate forests have more seasonality, which complicates satellite-based monitoring. Here, we present an approach, Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA), that combines time series analysis and spectral mixture analysis running on GEE for monitoring abrupt and gradual forest degradation in temperate regions. We used this approach to monitor forest degradation and deforestation from 1987 to 2019 in the country of Georgia. Reference conditions were observed at sample locations selected under stratified random sampling for area estimation and accuracy assessment. The overall accuracy of our map was 91%. The user's accuracy and producer's accuracy of the forest degradation class were 69% and 83%, respectively. The sampling-based area estimate with 95% confidence intervals of forest degradation was 3541 ± 556 km2 (11% of the forest area in 1987), which was significantly larger than the area estimate of deforestation, 158 ± 98 km2. Our approach successfully mapped forest degradation and estimated the area of forest degradation in Georgia with small uncertainty, which earlier studies failed to estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
再睡一夏完成签到,获得积分10
刚刚
坦率的凉面完成签到,获得积分10
1秒前
2秒前
曹沛岚完成签到,获得积分10
3秒前
3秒前
背后的大侠完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
老杨完成签到,获得积分10
4秒前
ZS0901发布了新的文献求助10
4秒前
科研通AI5应助miao采纳,获得10
5秒前
wangchangli完成签到,获得积分10
5秒前
ghost发布了新的文献求助10
5秒前
科研通AI2S应助sjfczyh采纳,获得10
6秒前
andrewyu发布了新的文献求助10
6秒前
6秒前
酷波er应助笑点低的发夹采纳,获得10
6秒前
小二郎应助酷酷伟宸采纳,获得10
7秒前
dsf发布了新的文献求助10
7秒前
8秒前
今晚打老虎完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
沉默便当完成签到,获得积分10
9秒前
科研通AI5应助wwc采纳,获得10
9秒前
Jasper应助杨老板采纳,获得10
9秒前
10秒前
10秒前
幽默胜发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
辞树完成签到,获得积分10
10秒前
11秒前
11秒前
Ees发布了新的文献求助10
11秒前
12秒前
12秒前
小蘑菇应助默默的天亦采纳,获得10
12秒前
科研通AI5应助wodel采纳,获得10
13秒前
张姐发布了新的文献求助10
15秒前
冷艳的寒天完成签到,获得积分10
15秒前
科研通AI5应助Sylvia采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775