Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis

环境科学 森林退化 温带森林 遥感 森林砍伐(计算机科学) 亚马逊雨林 温带雨林 采样(信号处理) 减少毁林和森林退化造成的排放 温带气候 卫星图像 土地退化 地理 气候变化 计算机科学 土地利用 地质学 生态学 碳储量 生态系统 程序设计语言 海洋学 滤波器(信号处理) 生物 计算机视觉
作者
Shijuan Chen,Curtis E. Woodcock,Eric L. Bullock,Paulo Arévalo,Paata Torchinava,Siqi Peng,Pontus Olofsson
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:265: 112648-112648 被引量:91
标识
DOI:10.1016/j.rse.2021.112648
摘要

Current estimates of forest degradation are associated with large uncertainties. However, recent advancements in the availability of remote sensing data (e.g., the free data policies of the Landsat and Sentinel Programs) and cloud computing platforms (e.g., Google Earth Engine (GEE)) provide new opportunities for monitoring forest degradation. Several recent studies focus on monitoring forest degradation in the tropics, particularly the Amazon, but there are less studies of temperate forest degradation. Compared to the Amazon, temperate forests have more seasonality, which complicates satellite-based monitoring. Here, we present an approach, Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA), that combines time series analysis and spectral mixture analysis running on GEE for monitoring abrupt and gradual forest degradation in temperate regions. We used this approach to monitor forest degradation and deforestation from 1987 to 2019 in the country of Georgia. Reference conditions were observed at sample locations selected under stratified random sampling for area estimation and accuracy assessment. The overall accuracy of our map was 91%. The user's accuracy and producer's accuracy of the forest degradation class were 69% and 83%, respectively. The sampling-based area estimate with 95% confidence intervals of forest degradation was 3541 ± 556 km2 (11% of the forest area in 1987), which was significantly larger than the area estimate of deforestation, 158 ± 98 km2. Our approach successfully mapped forest degradation and estimated the area of forest degradation in Georgia with small uncertainty, which earlier studies failed to estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代鸣凤发布了新的文献求助10
刚刚
钱念波发布了新的文献求助10
1秒前
雪白的雪完成签到,获得积分10
2秒前
明月落乌江完成签到,获得积分10
4秒前
越红完成签到,获得积分10
4秒前
搜集达人应助Fan_采纳,获得10
5秒前
Lucas应助Chenq1nss采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
8秒前
8秒前
9秒前
10秒前
miketyson完成签到,获得积分10
11秒前
11秒前
唔昂wang发布了新的文献求助20
13秒前
wang发布了新的文献求助10
14秒前
14秒前
14秒前
孤海未蓝发布了新的文献求助10
15秒前
平陵发布了新的文献求助10
15秒前
16秒前
Sunrise完成签到,获得积分10
17秒前
18秒前
Aspirin发布了新的文献求助10
20秒前
哈哈哈完成签到,获得积分10
20秒前
大力荷花发布了新的文献求助10
21秒前
L.C.发布了新的文献求助10
22秒前
23秒前
充电宝应助躺躺采纳,获得10
25秒前
蘑菇屋应助L.C.采纳,获得10
26秒前
王磊发布了新的文献求助20
29秒前
ding应助平陵采纳,获得10
33秒前
李爱国应助梦灵采纳,获得10
33秒前
隐形曼青应助ylh采纳,获得10
35秒前
孤独的猕猴桃完成签到,获得积分10
36秒前
38秒前
39秒前
BLDC888发布了新的文献求助10
39秒前
刘一安完成签到 ,获得积分10
41秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309