Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis

环境科学 森林退化 温带森林 遥感 森林砍伐(计算机科学) 亚马逊雨林 温带雨林 采样(信号处理) 减少毁林和森林退化造成的排放 温带气候 卫星图像 土地退化 地理 气候变化 计算机科学 土地利用 地质学 生态学 碳储量 生态系统 程序设计语言 海洋学 滤波器(信号处理) 生物 计算机视觉
作者
Shijuan Chen,Curtis E. Woodcock,Eric L. Bullock,Paulo Arévalo,Paata Torchinava,Siqi Peng,Pontus Olofsson
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:265: 112648-112648 被引量:91
标识
DOI:10.1016/j.rse.2021.112648
摘要

Current estimates of forest degradation are associated with large uncertainties. However, recent advancements in the availability of remote sensing data (e.g., the free data policies of the Landsat and Sentinel Programs) and cloud computing platforms (e.g., Google Earth Engine (GEE)) provide new opportunities for monitoring forest degradation. Several recent studies focus on monitoring forest degradation in the tropics, particularly the Amazon, but there are less studies of temperate forest degradation. Compared to the Amazon, temperate forests have more seasonality, which complicates satellite-based monitoring. Here, we present an approach, Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA), that combines time series analysis and spectral mixture analysis running on GEE for monitoring abrupt and gradual forest degradation in temperate regions. We used this approach to monitor forest degradation and deforestation from 1987 to 2019 in the country of Georgia. Reference conditions were observed at sample locations selected under stratified random sampling for area estimation and accuracy assessment. The overall accuracy of our map was 91%. The user's accuracy and producer's accuracy of the forest degradation class were 69% and 83%, respectively. The sampling-based area estimate with 95% confidence intervals of forest degradation was 3541 ± 556 km2 (11% of the forest area in 1987), which was significantly larger than the area estimate of deforestation, 158 ± 98 km2. Our approach successfully mapped forest degradation and estimated the area of forest degradation in Georgia with small uncertainty, which earlier studies failed to estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助斌城采纳,获得10
刚刚
刚刚
1秒前
靓丽幻梅发布了新的文献求助10
1秒前
dalin发布了新的文献求助100
1秒前
孟龙威发布了新的文献求助10
1秒前
隐形曼青应助虚幻的青槐采纳,获得10
1秒前
王羲之发布了新的文献求助10
1秒前
hyy发布了新的文献求助10
2秒前
科目三应助eee采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
SciGPT应助sola采纳,获得10
3秒前
科研通AI5应助沉静的丹烟采纳,获得10
3秒前
不爱看文献完成签到,获得积分10
3秒前
4秒前
4秒前
Ye发布了新的文献求助10
4秒前
浮游应助买了束花采纳,获得10
4秒前
高大抽屉完成签到,获得积分20
4秒前
只谈风月应助毕业采纳,获得10
4秒前
犹豫草莓完成签到,获得积分10
4秒前
lucky给lucky的求助进行了留言
5秒前
RXue发布了新的文献求助10
5秒前
啊哈嗯哈哈啊完成签到,获得积分10
5秒前
qianqianqian完成签到,获得积分10
5秒前
JamesPei应助无语的小熊猫采纳,获得10
5秒前
5秒前
科研通AI5应助021采纳,获得10
5秒前
5秒前
123456发布了新的文献求助10
6秒前
6秒前
6秒前
sasa发布了新的文献求助30
6秒前
三生三世缘关注了科研通微信公众号
6秒前
kuki完成签到,获得积分10
6秒前
所所应助boris20082025采纳,获得30
7秒前
dadii完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949