Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis

环境科学 森林退化 温带森林 遥感 森林砍伐(计算机科学) 亚马逊雨林 温带雨林 采样(信号处理) 减少毁林和森林退化造成的排放 温带气候 卫星图像 土地退化 地理 气候变化 计算机科学 土地利用 地质学 生态学 碳储量 生态系统 程序设计语言 海洋学 滤波器(信号处理) 生物 计算机视觉
作者
Shijuan Chen,Curtis E. Woodcock,Eric L. Bullock,Paulo Arévalo,Paata Torchinava,Siqi Peng,Pontus Olofsson
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:265: 112648-112648 被引量:155
标识
DOI:10.1016/j.rse.2021.112648
摘要

Current estimates of forest degradation are associated with large uncertainties. However, recent advancements in the availability of remote sensing data (e.g., the free data policies of the Landsat and Sentinel Programs) and cloud computing platforms (e.g., Google Earth Engine (GEE)) provide new opportunities for monitoring forest degradation. Several recent studies focus on monitoring forest degradation in the tropics, particularly the Amazon, but there are less studies of temperate forest degradation. Compared to the Amazon, temperate forests have more seasonality, which complicates satellite-based monitoring. Here, we present an approach, Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA), that combines time series analysis and spectral mixture analysis running on GEE for monitoring abrupt and gradual forest degradation in temperate regions. We used this approach to monitor forest degradation and deforestation from 1987 to 2019 in the country of Georgia. Reference conditions were observed at sample locations selected under stratified random sampling for area estimation and accuracy assessment. The overall accuracy of our map was 91%. The user's accuracy and producer's accuracy of the forest degradation class were 69% and 83%, respectively. The sampling-based area estimate with 95% confidence intervals of forest degradation was 3541 ± 556 km2 (11% of the forest area in 1987), which was significantly larger than the area estimate of deforestation, 158 ± 98 km2. Our approach successfully mapped forest degradation and estimated the area of forest degradation in Georgia with small uncertainty, which earlier studies failed to estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
桐桐应助101采纳,获得30
1秒前
1秒前
1秒前
yu发布了新的文献求助10
2秒前
LC完成签到,获得积分10
2秒前
ZhouZhou发布了新的文献求助10
2秒前
2秒前
kiide完成签到,获得积分10
3秒前
4秒前
5秒前
wangli发布了新的文献求助10
6秒前
ppprotein发布了新的文献求助10
6秒前
zx发布了新的文献求助10
7秒前
上官若男应助阔达的冷霜采纳,获得10
7秒前
Owen应助不冬眠采纳,获得10
7秒前
SCL发布了新的文献求助10
7秒前
研友_nPoXoL发布了新的文献求助10
7秒前
8秒前
8秒前
koi完成签到,获得积分20
9秒前
FashionBoy应助小p采纳,获得30
9秒前
dmm完成签到,获得积分10
9秒前
ZHG完成签到,获得积分10
10秒前
Q11发布了新的文献求助10
10秒前
希望天下0贩的0应助虾虾采纳,获得10
10秒前
希望天下0贩的0应助煜琪采纳,获得10
11秒前
搜集达人应助复方蛋酥卷采纳,获得10
12秒前
Hello应助wangli采纳,获得10
12秒前
RONG发布了新的文献求助10
13秒前
14秒前
斯文败类应助张天成采纳,获得10
14秒前
TAN完成签到 ,获得积分10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
吴景轩发布了新的文献求助10
19秒前
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492432
求助须知:如何正确求助?哪些是违规求助? 4590523
关于积分的说明 14430879
捐赠科研通 4522998
什么是DOI,文献DOI怎么找? 2478115
邀请新用户注册赠送积分活动 1463158
关于科研通互助平台的介绍 1435830