Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue

电子鼻 电子舌 化学 气体分析呼吸 尿 舌头 鼻子 肝硬化 泌尿系统 色谱法 内科学 人工智能 病理 外科 食品科学 医学 生物化学 计算机科学 品味
作者
Omar Zaim,Alassane Diouf,Nezha El Bari,N Lagdali,I Benelbarhdadi,F.Z. Ajana,Eduard Llobet,Benachir Bouchikhi
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1184: 339028-339028 被引量:9
标识
DOI:10.1016/j.aca.2021.339028
摘要

Advanced stage detection of liver cirrhosis (LCi) would lead to high mortality rates in patients. Therefore, accurate and non-invasive tools for its early detection are highly needed using human emanations that may reflect this disease. Human breath, along with urine and blood, has long been one of the three main biological media for assessing human health and environmental exposure. The primary objective of this study was to explore the potential of using volatile organic compounds (VOCs) assay of exhaled breath and urine samples for the diagnosis of patients with LCi and healthy controls (HC). For this purpose, we used a hybrid electronic nose (E-nose) combining two sensor families, consisting of an array of five commercial chemical gas sensors and six interdigitated chemical gas sensors based on pristine or metal-doped WO3 nanowires for sensing volatile gases in exhaled breath. A voltammetric electronic tongue (VE-tongue), composed of five working electrodes, was dedicated to the analysis of urinary VOCs using cyclic voltammetry as a measurement technique. 54 patients were recruited for this study, comprising 22 patients with LCi, and 32 HC. The two-sensing systems coupled with pattern recognition methods, namely Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), were trained to classify data clusters associated with the health status of the two groups. The diagnostic performances of the E-nose and VE-tongue systems were studied by using the receiver operating characteristic (ROC) method. The use of the E-nose or the VE-tongue separately, trained with these appropriate classifiers, showed a slight overlap indicating no clear discrimination between LCi patients and HC. To improve the performance of both electronic sensing devices, an emerging strategy, namely a multi-sensor data fusion technique, was proposed as a second aim to overcome this shortcoming. The data fusion approach of the two systems, at a medium level of abstraction, has demonstrated the ability to assess human health and disease status using non-invasive screening tools based on exhaled breath and urinary VOC analysis. This suggests that exhaled breath as well as urinary VOCs are specific to a disease state and could potentially be used as diagnostic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
捣蛋完成签到,获得积分10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
小吕小吕发布了新的文献求助10
1秒前
bkagyin应助linan采纳,获得10
3秒前
捣蛋发布了新的文献求助20
4秒前
ZX0501完成签到,获得积分10
5秒前
6秒前
NexusExplorer应助月轩姐姐采纳,获得10
7秒前
33应助恩善采纳,获得10
7秒前
7秒前
10秒前
纯真采蓝完成签到,获得积分10
10秒前
tian发布了新的文献求助10
11秒前
开朗大雁完成签到 ,获得积分10
14秒前
夜苍鹰完成签到 ,获得积分10
14秒前
坚强莞发布了新的文献求助10
16秒前
深情安青应助hyhyhyhy采纳,获得10
16秒前
研友_LwXJgn应助欢呼的世立采纳,获得10
17秒前
20秒前
愤怒的子骞完成签到,获得积分10
21秒前
搜集达人应助胖达采纳,获得10
21秒前
22秒前
tian完成签到,获得积分20
23秒前
光电彭于晏完成签到,获得积分10
24秒前
忐忑的方盒完成签到 ,获得积分10
24秒前
24秒前
24秒前
cing完成签到,获得积分10
24秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387455
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789896
捐赠科研通 2686064
什么是DOI,文献DOI怎么找? 1471442
科研通“疑难数据库(出版商)”最低求助积分说明 680272
邀请新用户注册赠送积分活动 673062