Towards On-Device Federated Learning: A Direct Acyclic Graph-based Blockchain Approach

有向无环图 块链 计算机科学 分布式计算 可扩展性 软件部署 图形 理论计算机科学 数据库 算法 计算机安全 软件工程
作者
Mingrui Cao,Long Zhang,Bin Cao
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2104.13092
摘要

Due to the distributed characteristics of Federated Learning (FL), the vulnerability of global model and coordination of devices are the main obstacle. As a promising solution of decentralization, scalability and security, leveraging blockchain in FL has attracted much attention in recent years. However, the traditional consensus mechanisms designed for blockchain like Proof of Work (PoW) would cause extreme resource consumption, which reduces the efficiency of FL greatly, especially when the participating devices are wireless and resource-limited. In order to address device asynchrony and anomaly detection in FL while avoiding the extra resource consumption caused by blockchain, this paper introduces a framework for empowering FL using Direct Acyclic Graph (DAG)-based blockchain systematically (DAG-FL). Accordingly, DAG-FL is first introduced from a three-layer architecture in details, and then two algorithms DAG-FL Controlling and DAG-FL Updating are designed running on different nodes to elaborate the operation of DAG-FL consensus mechanism. After that, a Poisson process model is formulated to discuss that how to set deployment parameters to maintain DAG-FL stably in different federated learning tasks. The extensive simulations and experiments show that DAG-FL can achieve better performance in terms of training efficiency and model accuracy compared with the typical existing on-device federated learning systems as the benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ref:rain完成签到,获得积分10
刚刚
llzuo完成签到,获得积分10
2秒前
seattle完成签到,获得积分10
3秒前
JYM完成签到,获得积分10
4秒前
月亮上的猫完成签到,获得积分10
4秒前
回眸完成签到 ,获得积分10
5秒前
RJL完成签到,获得积分10
5秒前
nobody完成签到,获得积分10
6秒前
李钟硕完成签到,获得积分10
6秒前
Smoiy完成签到 ,获得积分10
7秒前
佳宝完成签到,获得积分10
7秒前
7秒前
bianco2007完成签到,获得积分10
7秒前
李爱国应助fixing采纳,获得10
10秒前
12秒前
你好啊完成签到,获得积分10
13秒前
无为完成签到,获得积分10
14秒前
Migrol完成签到,获得积分10
16秒前
daheeeee完成签到,获得积分10
17秒前
菜鸟完成签到,获得积分10
17秒前
17秒前
啦啦啦完成签到 ,获得积分10
18秒前
fixing完成签到,获得积分10
19秒前
和春住完成签到,获得积分10
19秒前
1111发布了新的文献求助10
20秒前
西习完成签到,获得积分10
20秒前
科研通AI2S应助to高坚果采纳,获得10
21秒前
TMOMOR应助twrw采纳,获得10
21秒前
田二亩完成签到,获得积分10
22秒前
jianjiao完成签到,获得积分10
22秒前
tuzi完成签到,获得积分0
23秒前
kk完成签到,获得积分10
23秒前
lilei完成签到,获得积分10
23秒前
fixing发布了新的文献求助10
23秒前
旺旺雪饼完成签到,获得积分10
23秒前
IVY1300完成签到,获得积分10
25秒前
123完成签到,获得积分10
26秒前
ly完成签到,获得积分10
28秒前
严锦强完成签到,获得积分10
29秒前
xuan完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671