Towards On-Device Federated Learning: A Direct Acyclic Graph-based Blockchain Approach

有向无环图 块链 计算机科学 分布式计算 可扩展性 软件部署 图形 理论计算机科学 数据库 算法 计算机安全 软件工程
作者
Mingrui Cao,Long Zhang,Bin Cao
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2104.13092
摘要

Due to the distributed characteristics of Federated Learning (FL), the vulnerability of global model and coordination of devices are the main obstacle. As a promising solution of decentralization, scalability and security, leveraging blockchain in FL has attracted much attention in recent years. However, the traditional consensus mechanisms designed for blockchain like Proof of Work (PoW) would cause extreme resource consumption, which reduces the efficiency of FL greatly, especially when the participating devices are wireless and resource-limited. In order to address device asynchrony and anomaly detection in FL while avoiding the extra resource consumption caused by blockchain, this paper introduces a framework for empowering FL using Direct Acyclic Graph (DAG)-based blockchain systematically (DAG-FL). Accordingly, DAG-FL is first introduced from a three-layer architecture in details, and then two algorithms DAG-FL Controlling and DAG-FL Updating are designed running on different nodes to elaborate the operation of DAG-FL consensus mechanism. After that, a Poisson process model is formulated to discuss that how to set deployment parameters to maintain DAG-FL stably in different federated learning tasks. The extensive simulations and experiments show that DAG-FL can achieve better performance in terms of training efficiency and model accuracy compared with the typical existing on-device federated learning systems as the benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wt发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
songjin完成签到 ,获得积分10
6秒前
7秒前
Wen发布了新的文献求助10
9秒前
健壮问兰发布了新的文献求助10
9秒前
10秒前
11秒前
慕青应助wt采纳,获得10
12秒前
沐夕完成签到,获得积分10
12秒前
12秒前
无霁之都发布了新的文献求助10
15秒前
15秒前
闪闪天晴完成签到,获得积分10
16秒前
麋鹿完成签到 ,获得积分10
17秒前
科研通AI2S应助123yyu采纳,获得10
17秒前
wallonce发布了新的文献求助30
18秒前
20秒前
今后应助小新小新采纳,获得10
20秒前
21秒前
23秒前
绿麦盲区完成签到,获得积分10
24秒前
wmk完成签到,获得积分10
26秒前
chenyunxia完成签到 ,获得积分10
28秒前
28秒前
zjw发布了新的文献求助20
28秒前
30秒前
丶呆久自然萌完成签到,获得积分10
31秒前
32秒前
Qianyun发布了新的文献求助10
32秒前
CodeCraft应助wallonce采纳,获得10
33秒前
金鱼完成签到 ,获得积分10
33秒前
34秒前
34秒前
岁岁安发布了新的文献求助10
35秒前
37秒前
Lynn完成签到,获得积分10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304540
求助须知:如何正确求助?哪些是违规求助? 2938522
关于积分的说明 8489066
捐赠科研通 2613005
什么是DOI,文献DOI怎么找? 1427058
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647465