Dynamic and Multi-faceted Spatio-temporal Deep Learning for Traffic Speed Forecasting

计算机科学 邻接表 邻接矩阵 图形 人工智能 骨料(复合) 交通速度 数据挖掘 浮动车数据 加速 理论计算机科学 运输工程 算法 交通拥挤 工程类 操作系统 复合材料 材料科学
作者
Liangzhe Han,Bowen Du,Leilei Sun,Yanjie Fu,Yisheng Lv,Hui Xiong
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 547-555 被引量:143
标识
DOI:10.1145/3447548.3467275
摘要

Dynamic Graph Neural Networks (DGNNs) have become one of the most promising methods for traffic speed forecasting. However, when adapting DGNNs for traffic speed forecasting, existing approaches are usually built on a static adjacency matrix (no matter predefined or self-learned) to learn spatial relationships among different road segments, even if the impact of two road segments can be changeable dynamically during a day. Moreover, the future traffic speed cannot only be related with the current traffic speed, but also be affected by other factors such as traffic volumes. To this end, in this paper, we aim to explore these dynamic and multi-faceted spatio-temporal characteristics inherent in traffic data for further unleashing the power of DGNNs for better traffic speed forecasting. Specifically, we design a dynamic graph construction method to learn the time-specific spatial dependencies of road segments. Then, a dynamic graph convolution module is proposed to aggregate hidden states of neighbor nodes to focal nodes by message passing on the dynamic adjacency matrices. Moreover, a multi-faceted fusion module is provided to incorporate the auxiliary hidden states learned from traffic volumes with the primary hidden states learned from traffic speeds. Finally, experimental results on real-world data demonstrate that our method can not only achieve the state-of-the-art prediction performances, but also obtain the explicit and interpretable dynamic spatial relationships of road segments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
青芒果发布了新的文献求助10
2秒前
庸人自扰完成签到,获得积分10
2秒前
化工牛马发布了新的文献求助10
3秒前
4秒前
科研小白发布了新的文献求助10
5秒前
hehexi发布了新的文献求助10
6秒前
7秒前
充电宝应助北风采纳,获得10
8秒前
9秒前
不懈奋进发布了新的文献求助30
9秒前
尊敬自行车完成签到,获得积分10
9秒前
简单完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
宽叶榕发布了新的文献求助10
13秒前
13秒前
13秒前
彭于晏应助冷傲的白卉采纳,获得10
13秒前
StuXuhao发布了新的文献求助200
14秒前
15秒前
嗯qq完成签到,获得积分20
15秒前
WANG发布了新的文献求助10
15秒前
16秒前
银角大王发布了新的文献求助100
16秒前
酷波er应助章章采纳,获得10
16秒前
17秒前
小蘑菇应助魔幻傲霜采纳,获得10
18秒前
思源应助科研01采纳,获得10
18秒前
wanci应助实验大牛采纳,获得10
18秒前
初夏发布了新的文献求助10
18秒前
北风发布了新的文献求助10
19秒前
andrele发布了新的文献求助10
20秒前
21秒前
甜甜圈完成签到 ,获得积分10
21秒前
领导范儿应助喔喔采纳,获得10
21秒前
22秒前
Lucas应助淡淡的冥茗采纳,获得10
23秒前
传奇3应助tan采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670761
求助须知:如何正确求助?哪些是违规求助? 3227655
关于积分的说明 9776657
捐赠科研通 2937838
什么是DOI,文献DOI怎么找? 1609653
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735894