Data-driven based student programming competition award prediction via machine learning models

计算机科学 竞赛(生物学) 机器学习 人工智能 生态学 生物
作者
Yong Liu,Kai Tian,Haifeng Wang,Hengyuan Liu,Yonghao Wu,Xiang Chen
标识
DOI:10.1109/iccse51940.2021.9569407
摘要

Student performance prediction is one of the most important subjects for educational data mining. Generally, student performance prediction can be achieved by tracing the evolution of each student's knowledge states via a series of learning activities. However, previous studies mainly focus on predicting the grade of students. To the best of our knowledge, there are no studies focus on student competition award prediction, which is vital for students' development and learning process. In this paper, we aim to predict students' programming competition awards by building machine learning models with basic features and competition-related features extracted from 107 students. Specifically, we employ two kinds of data-driven-based features, which are basic features and programming competition-related features. The basic features are the personal and grade information of students in programming courses. The programming competition-related features are the performance data of students in the programming competition training activities. The empirical results show that the random forest model can achieve the best performance among all models with an Accuracy of 0.89, an F-measure of 0.88, a Precision of 0.90, and a Recall of 0.85. Moreover, the empirical results also show that the competition-related features are more influential features for predicting the students' competition awards, which should be paid attention to in the follow-up studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猪鱿鱼发布了新的文献求助10
1秒前
香蕉觅云应助落寞银耳汤采纳,获得10
2秒前
3秒前
yuyu完成签到 ,获得积分10
3秒前
Tinsulfides完成签到,获得积分10
5秒前
懒熊发布了新的文献求助10
8秒前
嗒嗒发布了新的文献求助10
9秒前
liz关注了科研通微信公众号
12秒前
Yacon完成签到 ,获得积分10
16秒前
俺村俺最牛完成签到,获得积分10
21秒前
22秒前
24秒前
CMCM发布了新的文献求助30
28秒前
29秒前
30秒前
31秒前
32秒前
32秒前
33秒前
舒心靖琪完成签到 ,获得积分10
34秒前
酷波er应助三水采纳,获得10
34秒前
刘子龙发布了新的文献求助10
34秒前
35秒前
liz发布了新的文献求助10
35秒前
薛定谔的猫完成签到 ,获得积分10
35秒前
无花果应助duxy采纳,获得10
35秒前
36秒前
11完成签到,获得积分20
38秒前
古卡可可完成签到,获得积分10
38秒前
打打应助qiu采纳,获得10
39秒前
任性访风完成签到,获得积分10
41秒前
42秒前
44秒前
duxy完成签到,获得积分20
44秒前
三水发布了新的文献求助10
47秒前
雨堂完成签到 ,获得积分10
47秒前
duxy发布了新的文献求助10
47秒前
47秒前
星辰大海应助爱笑的万天采纳,获得10
52秒前
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290