High-precision piston detection method for segments based on a single convolutional neural network

卷积神经网络 计算机科学 活塞(光学) 人工智能 模式识别(心理学) 人工神经网络 光学 物理 波前
作者
Hao Wang,Weirui Zhao,Lu Zhang
出处
期刊:Seventh Symposium on Novel Photoelectronic Detection Technology and Applications 卷期号:: 417-417 被引量:1
标识
DOI:10.1117/12.2587641
摘要

High-precision detection of piston error is one of the key technologies for high-resolution large-aperture segmented telescopes. Most piston detection methods based on neural networks are difficult to achieve high accuracy. In this Letter, we propose a high-precision piston error detection method based on convolutional neural networks (CNN). A system with six sub-mirrors is used, and one of the sub-mirrors is set as the reference mirror. The network can simultaneously extract the piston information of the remaining five sub-mirrors to be tested from the point spread function (PSF). In the training phase, five sub-mirrors are set with 10,000 groups of random piston values with a range slightly less than one wavelength, and PSF images can be acquired accordingly. Then, 10,000 PSF images with corresponding piston errors are used to train the network. After training, we only need to input a PSF image into the pre-trained network, and the piston can be obtained directly. It is verified by simulation that the average piston's measurement error of five submirrors is just 0.0089λ RMS (λ=632nm). In addition, this end-to-end method based on deep learning extremely reduces the complexity of the optical system, and just need to set a mask with a sparse multi-subaperture configuration in the conjugate plane of the segmented mirror. This method is accurate and fast, and can be widely used to detect the piston in phasing telescope arrays or segmented mirrors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LZY发布了新的文献求助10
1秒前
渣155136发布了新的文献求助10
1秒前
2秒前
3秒前
songyy完成签到,获得积分10
5秒前
wu应助dbzdq采纳,获得10
5秒前
CHAIZH发布了新的文献求助10
6秒前
玖川完成签到,获得积分20
6秒前
cc完成签到,获得积分10
7秒前
7秒前
脑洞疼应助可靠的寒风采纳,获得10
8秒前
10秒前
xkyasc完成签到,获得积分10
11秒前
12秒前
无限雨文完成签到 ,获得积分10
13秒前
鲁路修完成签到,获得积分10
14秒前
16秒前
17秒前
17秒前
18秒前
阿巴阿巴发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
泡泡发布了新的文献求助10
22秒前
丹曦完成签到,获得积分10
22秒前
zzq完成签到,获得积分10
22秒前
doul2023发布了新的文献求助10
23秒前
任性冰凡完成签到,获得积分10
23秒前
沉默的二娘完成签到,获得积分10
23秒前
24秒前
24秒前
meier1206完成签到,获得积分10
24秒前
24秒前
25秒前
mxy发布了新的文献求助20
25秒前
26秒前
Orange应助Nightfall采纳,获得10
26秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821