Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing

微尺度化学 材料科学 形状记忆聚合物 3D打印 电场 电子线路 加热元件 分形 纳米技术 导电体 形状记忆合金 机械工程 复合材料 电气工程 数学教育 数学分析 工程类 物理 量子力学 数学
作者
Yuan‐Fang Zhang,Zhenghao Li,Hongke Li,Honggeng Li,Yi Xiong,Xiaoyang Zhu,Hongbo Lan,Qi Ge
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (35): 41414-41423 被引量:78
标识
DOI:10.1021/acsami.1c03572
摘要

Thermally responsive shape memory polymers (SMPs) used in 4D printing are often reported to be activated by external heat sources or embedded stiff heaters. However, such heating strategies impede the practical application of 4D printing due to the lack of precise control over heating or the limited ability to accommodate the stretching during shape programming. Herein, we propose a novel 4D printing paradigm by fabricating stretchable heating circuits with fractal motifs via electric-field-driven microscale 3D printing of conductive paste for seamless integration into 3D printed structures with SMP components. By regulating the fractal order and printing/processing parameters, the overall electrical resistance and areal coverage of the circuits can be tuned to produce an efficient and uniform heating performance. Compared with serpentine structures, the resistance of fractal-based circuits remains relatively stable under both uniaxial and biaxial stretching. In practice, steady-state and transient heating modes can be respectively used during the shape programming and actuation phases. We demonstrate that this approach is suitable for 4D printed structures with shape programming by either uniaxial or biaxial stretching. Notably, the biaxial stretchability of fractal-based heating circuits enables the shape change between a planar structure and a 3D one with double curvature. The proposed strategy would offer more freedom in designing 4D printed structures and enable the manipulation of the latter in a controlled and selective manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SilverPlane发布了新的文献求助10
刚刚
小白完成签到,获得积分10
刚刚
刚刚
闲听花落完成签到,获得积分10
刚刚
蕲艾比比谁完成签到,获得积分10
刚刚
1秒前
HolmeTao发布了新的文献求助10
1秒前
www发布了新的文献求助10
1秒前
1秒前
XHH1994完成签到,获得积分10
1秒前
1秒前
时尚的靖完成签到 ,获得积分10
2秒前
2秒前
2秒前
沐阳发布了新的文献求助10
2秒前
BowieHuang应助sunyanghu369采纳,获得10
3秒前
风趣之云完成签到 ,获得积分10
3秒前
3秒前
3秒前
令狐擎宇发布了新的文献求助10
4秒前
李桂芳完成签到,获得积分10
4秒前
活力一刀发布了新的文献求助10
4秒前
深情安青应助文献快来采纳,获得10
4秒前
5秒前
含蓄又亦完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
科目三应助nnn采纳,获得10
6秒前
奋斗的橘子完成签到 ,获得积分10
6秒前
严金鱼完成签到,获得积分10
6秒前
研友_VZG7GZ应助成就乐巧采纳,获得10
6秒前
6秒前
6秒前
李大龙发布了新的文献求助10
6秒前
6秒前
6秒前
SilverPlane完成签到,获得积分10
6秒前
zcvxd发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724