微尺度化学
材料科学
形状记忆聚合物
3D打印
电场
电子线路
加热元件
分形
纳米技术
导电体
形状记忆合金
电加热
机械工程
复合材料
电气工程
数学教育
数学分析
工程类
物理
量子力学
数学
作者
Yuanfang Zhang,Zhenghao Li,Hongke Li,Honggeng Li,Yi Xiong,Xiaoyang Zhu,Hongbo Lan,Qi Ge
标识
DOI:10.1021/acsami.1c03572
摘要
Thermally responsive shape memory polymers (SMPs) used in 4D printing are often reported to be activated by external heat sources or embedded stiff heaters. However, such heating strategies impede the practical application of 4D printing due to the lack of precise control over heating or the limited ability to accommodate the stretching during shape programming. Herein, we propose a novel 4D printing paradigm by fabricating stretchable heating circuits with fractal motifs via electric-field-driven microscale 3D printing of conductive paste for seamless integration into 3D printed structures with SMP components. By regulating the fractal order and printing/processing parameters, the overall electrical resistance and areal coverage of the circuits can be tuned to produce an efficient and uniform heating performance. Compared with serpentine structures, the resistance of fractal-based circuits remains relatively stable under both uniaxial and biaxial stretching. In practice, steady-state and transient heating modes can be respectively used during the shape programming and actuation phases. We demonstrate that this approach is suitable for 4D printed structures with shape programming by either uniaxial or biaxial stretching. Notably, the biaxial stretchability of fractal-based heating circuits enables the shape change between a planar structure and a 3D one with double curvature. The proposed strategy would offer more freedom in designing 4D printed structures and enable the manipulation of the latter in a controlled and selective manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI