A clinically motivated self-supervised approach for content-based image retrieval of CT liver images

计算机科学 基于内容的图像检索 人工智能 背景(考古学) 领域(数学) 图像检索 可用性 特征提取 深度学习 过程(计算) 模式识别(心理学) 情报检索 机器学习 图像(数学) 人机交互 古生物学 数学 纯数学 生物 操作系统
作者
Kristoffer Wickstrøm,Eirik Agnalt Østmo,Keyur Radiya,Karl Øyvind Mikalsen,Michael Kampffmeyer,Robert Jenssen
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:107: 102239-102239 被引量:9
标识
DOI:10.1016/j.compmedimag.2023.102239
摘要

Deep learning-based approaches for content-based image retrieval (CBIR) of computed tomography (CT) liver images is an active field of research, but suffer from some critical limitations. First, they are heavily reliant on labeled data, which can be challenging and costly to acquire. Second, they lack transparency and explainability, which limits the trustworthiness of deep CBIR systems. We address these limitations by: (1) Proposing a self-supervised learning framework that incorporates domain-knowledge into the training procedure, and, (2) by providing the first representation learning explainability analysis in the context of CBIR of CT liver images. Results demonstrate improved performance compared to the standard self-supervised approach across several metrics, as well as improved generalization across datasets. Further, we conduct the first representation learning explainability analysis in the context of CBIR, which reveals new insights into the feature extraction process. Lastly, we perform a case study with cross-examination CBIR that demonstrates the usability of our proposed framework. We believe that our proposed framework could play a vital role in creating trustworthy deep CBIR systems that can successfully take advantage of unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
AIME发布了新的文献求助10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
传奇3应助buqi采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
Echo完成签到,获得积分10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
小小发布了新的文献求助10
3秒前
研友_VZG7GZ应助edtaa采纳,获得10
3秒前
3秒前
大吃一筐馒头完成签到,获得积分10
3秒前
yznfly应助科研通管家采纳,获得100
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
4秒前
迷路冰巧发布了新的文献求助10
4秒前
4秒前
TTZ完成签到 ,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385