A clinically motivated self-supervised approach for content-based image retrieval of CT liver images

计算机科学 基于内容的图像检索 人工智能 背景(考古学) 领域(数学) 图像检索 可用性 特征提取 深度学习 过程(计算) 模式识别(心理学) 情报检索 机器学习 图像(数学) 人机交互 古生物学 数学 纯数学 生物 操作系统
作者
Kristoffer Wickstrøm,Eirik Agnalt Østmo,Keyur Radiya,Karl Øyvind Mikalsen,Michael Kampffmeyer,Robert Jenssen
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:107: 102239-102239 被引量:9
标识
DOI:10.1016/j.compmedimag.2023.102239
摘要

Deep learning-based approaches for content-based image retrieval (CBIR) of computed tomography (CT) liver images is an active field of research, but suffer from some critical limitations. First, they are heavily reliant on labeled data, which can be challenging and costly to acquire. Second, they lack transparency and explainability, which limits the trustworthiness of deep CBIR systems. We address these limitations by: (1) Proposing a self-supervised learning framework that incorporates domain-knowledge into the training procedure, and, (2) by providing the first representation learning explainability analysis in the context of CBIR of CT liver images. Results demonstrate improved performance compared to the standard self-supervised approach across several metrics, as well as improved generalization across datasets. Further, we conduct the first representation learning explainability analysis in the context of CBIR, which reveals new insights into the feature extraction process. Lastly, we perform a case study with cross-examination CBIR that demonstrates the usability of our proposed framework. We believe that our proposed framework could play a vital role in creating trustworthy deep CBIR systems that can successfully take advantage of unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助银银采纳,获得10
1秒前
1秒前
LOONG完成签到,获得积分10
1秒前
百年孤独完成签到,获得积分10
1秒前
CipherSage应助hh采纳,获得10
1秒前
2秒前
2秒前
桐桐应助忧郁鸡翅采纳,获得30
2秒前
香蕉觅云应助张佳明采纳,获得10
2秒前
wanjingwan完成签到 ,获得积分10
3秒前
4秒前
领导范儿应助lz采纳,获得10
4秒前
爱吃冻梨发布了新的文献求助20
5秒前
粒粒完成签到,获得积分20
5秒前
芷莯完成签到,获得积分10
5秒前
6秒前
6秒前
huangqian完成签到,获得积分10
7秒前
7秒前
老毛完成签到,获得积分10
7秒前
7秒前
aaa完成签到,获得积分10
8秒前
tyy发布了新的文献求助10
8秒前
小智完成签到,获得积分10
8秒前
SYX完成签到,获得积分10
8秒前
lz完成签到,获得积分10
9秒前
9秒前
错过的风景完成签到,获得积分10
9秒前
852应助o30采纳,获得10
9秒前
天很蓝完成签到,获得积分10
10秒前
SYLH应助虚拟的皮卡丘采纳,获得10
10秒前
陶醉的妙竹完成签到 ,获得积分10
11秒前
11秒前
奶油布丁发布了新的文献求助10
11秒前
RONG发布了新的文献求助10
11秒前
李健的小迷弟应助zcj采纳,获得10
11秒前
12秒前
12秒前
NexusExplorer应助老王采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827