Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting

计算机科学 图形 邻接矩阵 理论计算机科学 卷积(计算机科学) 数据挖掘 人工智能 人工神经网络
作者
Chuanpan Zheng,Xiaoliang Fan,Shirui Pan,Haibing Jin,Zhaopeng Peng,Zonghan Wu,Cheng Wang,Philip S. Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 372-385 被引量:21
标识
DOI:10.1109/tkde.2023.3284156
摘要

Recent studies have shifted their focus towards formulating traffic forecasting as a spatio-temporal graph modeling problem. Typically, they constructed a static spatial graph at each time step and then connected each node with itself between adjacent time steps to create a spatio-temporal graph. However, this approach failed to explicitly reflect the correlations between different nodes at different time steps, thus limiting the learning capability of graph neural networks. Additionally, those models overlooked the dynamic spatio-temporal correlations among nodes by using the same adjacency matrix across different time steps. To address these limitations, we propose a novel approach called Spatio-Temporal Joint Graph Convolutional Networks (STJGCN) for accurate traffic forecasting on road networks over multiple future time steps. Specifically, our method encompasses the construction of both pre-defined and adaptive spatio-temporal joint graphs (STJGs) between any two time steps, which represent comprehensive and dynamic spatio-temporal correlations. We further introduce dilated causal spatio-temporal joint graph convolution layers on the STJG to capture spatio-temporal dependencies from distinct perspectives with multiple ranges. To aggregate information from different ranges, we propose a multi-range attention mechanism. Finally, we evaluate our approach on five public traffic datasets and experimental results demonstrate that STJGCN is not only computationally efficient but also outperforms 11 state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hans发布了新的文献求助20
2秒前
英俊的铭应助沉静天思采纳,获得10
2秒前
2秒前
桂圆发布了新的文献求助10
3秒前
3秒前
哈哈呵完成签到,获得积分10
3秒前
5秒前
今后应助liangmh采纳,获得10
5秒前
zzz发布了新的文献求助10
7秒前
R喻andom发布了新的文献求助10
9秒前
桂圆发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
13秒前
xuruolan发布了新的文献求助20
13秒前
13秒前
科研通AI2S应助LH采纳,获得10
14秒前
玩命的靖仇完成签到 ,获得积分10
14秒前
14秒前
14秒前
务实绿柏发布了新的文献求助10
14秒前
14秒前
15秒前
Echoes发布了新的文献求助10
15秒前
15秒前
沉静天思完成签到,获得积分10
17秒前
秋半梦发布了新的文献求助10
18秒前
18秒前
18秒前
liangmh发布了新的文献求助10
19秒前
宋德智发布了新的文献求助10
19秒前
澳大利亚马铃薯完成签到,获得积分10
20秒前
沉静天思发布了新的文献求助10
20秒前
谭显芝发布了新的文献求助10
20秒前
不爱干饭发布了新的文献求助10
20秒前
21秒前
杨气罐发布了新的文献求助10
21秒前
敏er好学完成签到,获得积分10
22秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291