Flexible Intervention of Polyoxometalate Support on the Electronegativity of Single Atoms to Enhance Catalytic Activity

化学 多金属氧酸盐 电负性 催化作用 计算化学 纳米技术 结晶学 有机化学 材料科学
作者
Yalei Zhang,Xiaofang Su,Tao Zheng,Waqas Ali Shah,Li‐Kai Yan,Shujun Li
出处
期刊:Inorganic Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.inorgchem.4c04978
摘要

The construction of single-atom catalysts (SACs) using polyoxometalates (POMs) as supports has attracted significant attention. Specifically, POMs possess the unique ability to reversibly accept and donate electrons; yet, the potential benefits of this distinctive characteristic on the activity of single atoms have remained unexplored. In this study, we employ density functional theory (DFT) calculations to investigate the synthesis of CH3COOH from CO, CH4, and H2O catalyzed by POM-supported SAC M1/POM (M = Pt, Rh, Ru, Pd, Co), aiming to gain a more comprehensive understanding of the role of POM support in SACs. Our proposed mechanism first involves CH4 activation for producing •CH3 and, at the same time, the catalytic intermediate [M1/POM]-. Then, CO and •CH3 are sequentially adsorbed on the single-atom site of [M1/POM]- and coupled to form COCH3. Finally, as H2O attacks CH3CO, CH3COOH is formed and released. The poorer activity of M1/POM (M = Rh, Ru, Pd, Co) compared with that of Pt1/POM is attributed to the low matching degree in the frontier molecular orbital energy between [M1/POM]- and CO/•CH3, which results in the inaccessibility of CO and •CH3 adsorptions, thus hindering the subsequent CH3COOH formation. Throughout the reaction process, the POM support promotes dynamic switching of single atoms between electron-rich and electron-poor states, leveraging its reversible electron transfer capability. The electron-deficient species •CH3 adsorption and H2O attack are enabled by the regular access of single atoms to electron-saturated state, while timely switching of single atoms to electron-deficient states facilitates CO adsorption and CH3 attack.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助有魅力荟采纳,获得10
刚刚
exquisite完成签到,获得积分10
1秒前
影像大侠完成签到,获得积分10
3秒前
LXR完成签到,获得积分20
4秒前
风槿完成签到 ,获得积分10
5秒前
7秒前
满意花卷完成签到 ,获得积分10
9秒前
娇娇大王完成签到,获得积分10
9秒前
SYLH完成签到 ,获得积分0
11秒前
不能吃太饱完成签到,获得积分10
13秒前
请叫我风吹麦浪应助zxd采纳,获得10
15秒前
南城雨落完成签到,获得积分10
15秒前
白子双完成签到,获得积分10
17秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
17秒前
panghuhu完成签到 ,获得积分10
17秒前
一一一多完成签到 ,获得积分10
18秒前
科研通AI2S应助温乐松采纳,获得10
19秒前
情怀应助等待秀采纳,获得10
21秒前
Dong完成签到,获得积分10
23秒前
止戈为武完成签到,获得积分10
26秒前
28秒前
28秒前
风信子deon01完成签到,获得积分10
30秒前
今后应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
李健应助LXR采纳,获得10
34秒前
34秒前
闲来逛逛007完成签到 ,获得积分10
34秒前
35秒前
36秒前
sherry完成签到 ,获得积分10
37秒前
科研通AI2S应助......采纳,获得10
38秒前
心有猛虎完成签到,获得积分10
38秒前
等待秀发布了新的文献求助10
40秒前
Jeffrey完成签到,获得积分10
41秒前
刘三哥完成签到,获得积分10
41秒前
dldldl完成签到,获得积分10
42秒前
钮祜禄萱完成签到 ,获得积分10
43秒前
傅勃霖完成签到,获得积分10
43秒前
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466849
求助须知:如何正确求助?哪些是违规求助? 3059711
关于积分的说明 9067459
捐赠科研通 2750193
什么是DOI,文献DOI怎么找? 1509066
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696923