Mapping abandoned cropland using Within-Year Sentinel-2 time series

归一化差异植被指数 自然地理学 土地利用 遥感 环境科学 土地复垦 地理 气候变化 地质学 海洋学 工程类 土木工程 考古
作者
Bo Liu,Wei Song
出处
期刊:Catena [Elsevier BV]
卷期号:223: 106924-106924 被引量:17
标识
DOI:10.1016/j.catena.2023.106924
摘要

Against the background of the COVID-19 pandemic and various armed conflicts, the world is experiencing an unprecedented food crisis. The reclamation of abandoned cropland with food production potential may increase the global food supply in a short period of time, ensuring food security. At present, the extraction of abandoned cropland is mainly based on low- and medium-resolution remote sensing image data, making it difficult to extract fragmented areas in mountainous regions and to distinguish between abandoned cropland and transitional classes (such as fallow cropland). We developed a change-detection method based on within-year Sentinel-2 time series to extract cropland abandoned from 2018 to 2021 and defined four types of croplands, namely spontaneously abandoned, induced abandoned, fallow, and lost cropland, using Linxia County in mountainous China as the study region. First, cropland objects were generated from multi-temporal Sentinel-2 images using the multi-resolution segmentation method, and the land use map of Linxia County from 2017 to 2021 was drawn using random forest classifier. Second, through defining and identifying different cropland types, the interannual dynamic changes in cropland from 2018 to 2021 were extracted by analyzing the annual land use change trajectory. Third, by analyzing the normalized difference vegetation index (NDVI) time series of cropland within-year, the active and cultivated cropland sites within-year were extracted by threshold segmentation. Finally, the changes in the four cropland types were extracted by intersecting the two result types. Our method captured the object level changes well (overall mapping accuracy = 93 ± 5 %), and the extraction accuracy of abandoned cropland reached 81 ± 2 %. Abandoned cropland was mostly located in areas of medium quality and with a moderate distance from rural settlements. Reclamation can potentially increase the grain production in Linxia County by at least 3.6 % and needs to be combined with the local natural geography and human activities. Our method is a robust method for extracting abandoned cropland and may be applied to other research related to land use change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccyq发布了新的文献求助10
刚刚
许志荣发布了新的文献求助10
1秒前
lc发布了新的文献求助10
2秒前
zcg完成签到 ,获得积分10
2秒前
2秒前
Avvei完成签到,获得积分10
3秒前
5秒前
乐乐应助Dr.Liujun采纳,获得10
5秒前
伟大的鲁路皇完成签到,获得积分10
5秒前
生动茹妖完成签到,获得积分10
5秒前
完美世界应助南瓜气气采纳,获得30
6秒前
6秒前
7秒前
jinyue完成签到,获得积分10
9秒前
hh发布了新的文献求助10
10秒前
12秒前
lc完成签到,获得积分10
14秒前
17秒前
李健的小迷弟应助anna采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
20秒前
嘀嘀咕咕发布了新的文献求助10
20秒前
大观天下完成签到,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
22秒前
兴奋千兰发布了新的文献求助10
23秒前
有机发布了新的文献求助10
24秒前
yukang发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073