Integrative Modeling of Signaling Network Dynamics Identifies Cell Type–Selective Therapeutic Strategies for FGFR4-Driven Cancers

癌症研究 计算生物学 动力学(音乐) 癌症 生物 医学 内科学 心理学 教育学
作者
Sung‐Young Shin,Nicole J. Chew,Milad Ghomlaghi,Anderly C. Chüeh,Yunhui Jeong,Lan K. Nguyen,Roger J. Daly
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (19): 3296-3309 被引量:4
标识
DOI:10.1158/0008-5472.can-23-3409
摘要

Abstract Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple-negative breast cancer and hepatocellular carcinoma. However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and to provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in triple-negative breast cancer cells. Analyzing the effects of cotargeting specific network nodes by systematically simulating the model predicted synergy of cotargeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, cotargeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that although AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven hepatocellular carcinoma cell line, in which there is a synergistic effect of cotargeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type–selective combination therapies and enhancing precision cancer treatment. Significance: Computational predictive modeling of signaling networks can decipher mechanisms of cancer cell resistance to targeted therapies and enable identification of more effective cancer type–specific combination treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗草莓完成签到,获得积分10
刚刚
勤恳的半邪完成签到,获得积分20
1秒前
贝林7完成签到,获得积分10
1秒前
hanhan发布了新的文献求助10
2秒前
2秒前
sss完成签到 ,获得积分10
2秒前
2秒前
2秒前
彭于晏应助lx采纳,获得10
3秒前
HOKUTO发布了新的文献求助10
4秒前
忧郁的灵枫关注了科研通微信公众号
5秒前
尛鱻完成签到,获得积分20
5秒前
5秒前
6秒前
贝林7发布了新的文献求助10
7秒前
Orange应助勤恳的半邪采纳,获得10
8秒前
Hey完成签到 ,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
xcgh应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得50
10秒前
汉堡包应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得20
11秒前
11秒前
6666666666完成签到,获得积分10
11秒前
11秒前
汝桢发布了新的文献求助10
11秒前
11秒前
义气幼珊发布了新的文献求助10
12秒前
上官若男应助lx采纳,获得10
12秒前
dol完成签到,获得积分20
13秒前
魁梧的鞋垫完成签到,获得积分10
14秒前
14秒前
浅碎时光发布了新的文献求助50
14秒前
15秒前
17秒前
斯文败类应助崔雪峰采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328673
求助须知:如何正确求助?哪些是违规求助? 4468375
关于积分的说明 13904790
捐赠科研通 4361352
什么是DOI,文献DOI怎么找? 2395710
邀请新用户注册赠送积分活动 1389235
关于科研通互助平台的介绍 1360022