Integrative Modeling of Signaling Network Dynamics Identifies Cell Type-selective Therapeutic Strategies for FGFR4-driven Cancers

癌症研究 计算生物学 动力学(音乐) 癌症 生物 医学 内科学 心理学 教育学
作者
Sung‐Young Shin,Nicole J. Chew,Milad Ghomlaghi,Anderly C. Chüeh,Yunhui Jeong,Lan K. Nguyen,Roger J. Daly
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (19): 3296-3309 被引量:2
标识
DOI:10.1158/0008-5472.can-23-3409
摘要

Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple-negative breast cancer and hepatocellular carcinoma. However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and to provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in triple-negative breast cancer cells. Analyzing the effects of cotargeting specific network nodes by systematically simulating the model predicted synergy of cotargeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, cotargeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that although AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven hepatocellular carcinoma cell line, in which there is a synergistic effect of cotargeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type-selective combination therapies and enhancing precision cancer treatment. Significance: Computational predictive modeling of signaling networks can decipher mechanisms of cancer cell resistance to targeted therapies and enable identification of more effective cancer type-specific combination treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪花完成签到,获得积分10
刚刚
清风完成签到 ,获得积分10
刚刚
雪花发布了新的文献求助10
4秒前
秀丽笑容完成签到 ,获得积分10
8秒前
江湖应助聪慧芷巧采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
Rjy完成签到 ,获得积分10
16秒前
性感母蟑螂完成签到 ,获得积分10
22秒前
ruochenzu完成签到,获得积分10
24秒前
陈尹蓝完成签到 ,获得积分10
25秒前
天道酬勤完成签到,获得积分10
27秒前
29秒前
仁爱的谷南完成签到,获得积分10
29秒前
雯雯完成签到 ,获得积分10
31秒前
一路有你完成签到 ,获得积分10
31秒前
32秒前
ruochenzu发布了新的文献求助10
32秒前
34秒前
wanghao完成签到 ,获得积分10
35秒前
图图发布了新的文献求助10
35秒前
十三完成签到 ,获得积分10
35秒前
聪慧芷巧完成签到,获得积分10
36秒前
米博士完成签到,获得积分10
37秒前
研友_VZGVzn完成签到,获得积分10
38秒前
Cheung2121发布了新的文献求助30
39秒前
黄芩完成签到 ,获得积分10
40秒前
57秒前
秋半梦完成签到,获得积分10
59秒前
李爱国应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
打地鼠工人完成签到,获得积分10
1分钟前
彩色半烟完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ning完成签到,获得积分10
1分钟前
图图完成签到,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
ludong_0完成签到,获得积分10
1分钟前
Asumita完成签到,获得积分10
1分钟前
双青豆完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022