Integrative Modeling of Signaling Network Dynamics Identifies Cell Type-selective Therapeutic Strategies for FGFR4-driven Cancers

癌症研究 计算生物学 动力学(音乐) 癌症 生物 医学 内科学 心理学 教育学
作者
Sung‐Young Shin,Nicole J. Chew,Milad Ghomlaghi,Anderly C. Chüeh,Yunhui Jeong,Lan K. Nguyen,Roger J. Daly
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (19): 3296-3309 被引量:2
标识
DOI:10.1158/0008-5472.can-23-3409
摘要

Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple-negative breast cancer and hepatocellular carcinoma. However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and to provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in triple-negative breast cancer cells. Analyzing the effects of cotargeting specific network nodes by systematically simulating the model predicted synergy of cotargeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, cotargeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that although AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven hepatocellular carcinoma cell line, in which there is a synergistic effect of cotargeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type-selective combination therapies and enhancing precision cancer treatment. Significance: Computational predictive modeling of signaling networks can decipher mechanisms of cancer cell resistance to targeted therapies and enable identification of more effective cancer type-specific combination treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的新之完成签到,获得积分10
刚刚
1秒前
1秒前
unite 小丘完成签到,获得积分10
1秒前
1秒前
百招完成签到,获得积分10
2秒前
喜宝完成签到 ,获得积分10
2秒前
2秒前
jim_hacker发布了新的文献求助10
2秒前
time完成签到,获得积分10
2秒前
小二郎应助细腻海蓝采纳,获得10
2秒前
YJ完成签到,获得积分10
2秒前
ldy完成签到,获得积分10
3秒前
微微完成签到,获得积分10
3秒前
瞬间默念完成签到,获得积分10
3秒前
虚心沂发布了新的文献求助10
3秒前
专一的新之完成签到 ,获得积分10
5秒前
5秒前
猫好好发布了新的文献求助10
5秒前
ghost发布了新的文献求助10
6秒前
yuhui完成签到,获得积分10
6秒前
飞云发布了新的文献求助10
7秒前
shuofeng完成签到 ,获得积分10
7秒前
高贵宛海完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
lay完成签到,获得积分10
8秒前
jim_hacker完成签到,获得积分10
8秒前
8秒前
嘟嘟等文章完成签到,获得积分10
8秒前
大个应助乔垣结衣采纳,获得10
8秒前
fang完成签到,获得积分10
9秒前
Qiao应助听闻墨笙采纳,获得30
10秒前
研友_851KE8发布了新的文献求助10
10秒前
谢昱完成签到,获得积分10
11秒前
11秒前
star009完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513729
关于积分的说明 11169450
捐赠科研通 3249084
什么是DOI,文献DOI怎么找? 1794592
邀请新用户注册赠送积分活动 875258
科研通“疑难数据库(出版商)”最低求助积分说明 804740