Integrative Modeling of Signaling Network Dynamics Identifies Cell Type-selective Therapeutic Strategies for FGFR4-driven Cancers

癌症研究 计算生物学 动力学(音乐) 癌症 生物 医学 内科学 心理学 教育学
作者
Sung‐Young Shin,Nicole J. Chew,Milad Ghomlaghi,Anderly C. Chüeh,Yunhui Jeong,Lan K. Nguyen,Roger J. Daly
出处
期刊:Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/0008-5472.can-23-3409
摘要

Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple negative breast cancer (TNBC) and hepatocellular carcinoma (HCC). However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in TNBC cells. Analyzing the effects of co-targeting specific network nodes by systematically simulating the model predicted synergy of co-targeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, co-targeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that while AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven HCC cell line, where there is a synergistic effect of co-targeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type-selective combination therapies and enhancing precision cancer treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助super chan采纳,获得10
刚刚
1秒前
1秒前
董行健发布了新的文献求助30
2秒前
3秒前
所所应助香蕉雅香采纳,获得10
3秒前
俭朴的皮卡丘完成签到 ,获得积分10
3秒前
深情安青应助Sitong采纳,获得10
3秒前
阿宝驳回了慕青应助
3秒前
lml520完成签到,获得积分10
3秒前
科研通AI2S应助飞快的三问采纳,获得10
3秒前
隐形曼青应助飞快的三问采纳,获得10
3秒前
智慧爷爷发布了新的文献求助10
4秒前
科研小畅发布了新的文献求助10
4秒前
Julie完成签到,获得积分20
4秒前
Ava应助淡淡的秋寒采纳,获得10
4秒前
科目三应助ZQP采纳,获得10
5秒前
老Mark完成签到,获得积分10
5秒前
6秒前
pangmengxuan完成签到,获得积分10
6秒前
奋斗水香发布了新的文献求助10
6秒前
6秒前
7秒前
小洪包完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
华仔应助陈豆豆采纳,获得10
8秒前
9秒前
森林木发布了新的文献求助10
10秒前
廾匸完成签到,获得积分10
10秒前
10秒前
10秒前
orixero应助优雅烨伟采纳,获得10
10秒前
孤独靖柏发布了新的文献求助10
10秒前
11秒前
Lucas应助PGH采纳,获得10
12秒前
12秒前
唠叨的晟睿完成签到,获得积分10
12秒前
廾匸发布了新的文献求助10
13秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075498
求助须知:如何正确求助?哪些是违规求助? 2728589
关于积分的说明 7505148
捐赠科研通 2376734
什么是DOI,文献DOI怎么找? 1260264
科研通“疑难数据库(出版商)”最低求助积分说明 610928
版权声明 597149