Integrative Modeling of Signaling Network Dynamics Identifies Cell Type-selective Therapeutic Strategies for FGFR4-driven Cancers

癌症研究 计算生物学 动力学(音乐) 癌症 生物 医学 内科学 心理学 教育学
作者
Sung‐Young Shin,Nicole J. Chew,Milad Ghomlaghi,Anderly C. Chüeh,Yunhui Jeong,Lan K. Nguyen,Roger J. Daly
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (19): 3296-3309 被引量:2
标识
DOI:10.1158/0008-5472.can-23-3409
摘要

Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple-negative breast cancer and hepatocellular carcinoma. However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and to provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in triple-negative breast cancer cells. Analyzing the effects of cotargeting specific network nodes by systematically simulating the model predicted synergy of cotargeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, cotargeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that although AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven hepatocellular carcinoma cell line, in which there is a synergistic effect of cotargeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type-selective combination therapies and enhancing precision cancer treatment. Significance: Computational predictive modeling of signaling networks can decipher mechanisms of cancer cell resistance to targeted therapies and enable identification of more effective cancer type-specific combination treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sarahminn发布了新的文献求助10
刚刚
Tata应助斯文懿轩采纳,获得10
2秒前
华仔应助喜悦念柏采纳,获得20
3秒前
5秒前
5秒前
耶稣与梦完成签到,获得积分10
5秒前
紫色哀伤发布了新的文献求助10
5秒前
bingsu108完成签到,获得积分10
6秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Iris发布了新的文献求助40
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
风清扬应助科研通管家采纳,获得30
8秒前
复杂荟发布了新的文献求助10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
澈千子发布了新的文献求助10
9秒前
浮游应助安心采纳,获得10
11秒前
丹曦完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
浮游应助舒心的芝麻采纳,获得10
14秒前
田国兵发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
Nancy完成签到 ,获得积分10
15秒前
莎莎士比亚完成签到,获得积分10
15秒前
hjjjjj1发布了新的文献求助10
15秒前
vlots应助zdb采纳,获得30
15秒前
15秒前
keyring完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869