Integrative Modeling of Signaling Network Dynamics Identifies Cell Type–Selective Therapeutic Strategies for FGFR4-Driven Cancers

癌症研究 计算生物学 动力学(音乐) 癌症 生物 医学 内科学 心理学 教育学
作者
Sung‐Young Shin,Nicole J. Chew,Milad Ghomlaghi,Anderly C. Chüeh,Yunhui Jeong,Lan K. Nguyen,Roger J. Daly
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (19): 3296-3309 被引量:4
标识
DOI:10.1158/0008-5472.can-23-3409
摘要

Abstract Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple-negative breast cancer and hepatocellular carcinoma. However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and to provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in triple-negative breast cancer cells. Analyzing the effects of cotargeting specific network nodes by systematically simulating the model predicted synergy of cotargeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, cotargeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that although AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven hepatocellular carcinoma cell line, in which there is a synergistic effect of cotargeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type–selective combination therapies and enhancing precision cancer treatment. Significance: Computational predictive modeling of signaling networks can decipher mechanisms of cancer cell resistance to targeted therapies and enable identification of more effective cancer type–specific combination treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkr完成签到,获得积分10
刚刚
今天看了几篇关注了科研通微信公众号
刚刚
刚刚
XIAONIE25发布了新的文献求助10
1秒前
1秒前
Orange应助jianwenhao采纳,获得10
1秒前
lyh发布了新的文献求助10
2秒前
2秒前
mouxq发布了新的文献求助10
2秒前
3秒前
科研通AI6应助嘻嘻采纳,获得10
3秒前
LiM完成签到,获得积分10
3秒前
希望天下0贩的0应助kkr采纳,获得10
3秒前
3秒前
4秒前
晓月发布了新的文献求助10
4秒前
无花果应助迪迦采纳,获得10
5秒前
5秒前
5秒前
Susie完成签到,获得积分10
5秒前
6秒前
6秒前
开心颜完成签到,获得积分10
6秒前
orixero应助夕未息采纳,获得10
6秒前
光亮的太阳完成签到,获得积分10
6秒前
王敏娜完成签到 ,获得积分10
6秒前
灯灯发布了新的文献求助10
6秒前
asstman完成签到,获得积分10
6秒前
7秒前
李健应助冷泡泡采纳,获得10
7秒前
7秒前
微生完成签到,获得积分10
7秒前
7秒前
LJHUA完成签到,获得积分10
7秒前
乐乐完成签到,获得积分10
7秒前
华仔应助1223采纳,获得20
8秒前
9秒前
9秒前
李晓彤完成签到,获得积分10
9秒前
平淡丹寒完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285