Experimental Study and Machine Learning-Based Prediction of the Abrasion Resistance of Manufactured Sand Concrete

磨损(机械) 材料科学 岩土工程 复合材料 结构工程 工程类 计算机科学 机器学习 法律工程学
作者
Xubo Xu,Jicheng Xie,Yasen Tang,Liufen Luo,Zheng Chen,Jiawen Li
出处
期刊:Buildings [MDPI AG]
卷期号:14 (11): 3433-3433 被引量:1
标识
DOI:10.3390/buildings14113433
摘要

To systematically analyze the impact of manufactured sand on the abrasion resistance of concrete, this paper investigates the correlation between sand type, sand ratio, stone powder content, compressive strength, and the abrasion resistance of manufactured sand concrete. Grey correlation analysis was conducted to assess the impact priority of each factor affecting the abrasion resistance, and prediction models for the abrasion resistance were developed using XGBoost, random forest, AdaBoost, and gradient boosting. The results indicate that compared to river sand concrete, C30 and C40 concrete prepared with limestone and diabase manufactured sand has 20% higher abrasion resistance due to the presence of stone powder and higher roughness and solidity. Within the range of 0.40 to 0.44, a lower sand ratio leads to higher abrasion resistance. For concrete prepared with manufactured sand containing 5% to 11% stone powder, the best abrasion resistance can be attained at a stone powder content of 9%, and microscopic analysis suggests the highest concrete density at this level. According to grey system theory, the influence of each affecting factor on the abrasion resistance follows the order: sand ratio > crushing value > roughness > compressive strength > stone powder content > 0.6. Compared to gradient boosting, random forest, and AdaBoost models, the XGBoost model adopted in this study showed relatively higher R2 and lower RMSE in both the training and testing sets, which proved its higher accuracy in predicting the abrasion loss of manufactured sand concrete. The machine learning models offer some guidance for predicting and enhancing the abrasion resistance of manufactured sand concrete in practical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助朱小小采纳,获得10
1秒前
2秒前
3秒前
3秒前
cocolu应助朴素小霜采纳,获得20
5秒前
科研白小白应助hh采纳,获得30
6秒前
乐乐乐乐乐乐应助hh采纳,获得10
6秒前
9秒前
9秒前
隐形曼青应助Zhangyw采纳,获得10
9秒前
Elvira发布了新的文献求助10
9秒前
李爱国应助互为安良采纳,获得10
10秒前
小弈发布了新的文献求助10
10秒前
英姑应助727042677采纳,获得10
11秒前
111完成签到,获得积分10
12秒前
一往之前发布了新的文献求助10
13秒前
搞怪哑铃发布了新的文献求助10
14秒前
15秒前
17秒前
nini发布了新的文献求助10
17秒前
梓泽丘墟应助一往之前采纳,获得10
18秒前
琪琪琪发布了新的文献求助50
23秒前
pwj发布了新的文献求助10
24秒前
uniondavid完成签到,获得积分10
25秒前
Candice应助梦罪者采纳,获得10
25秒前
科研通AI2S应助哭泣代容采纳,获得10
26秒前
27秒前
浅尝离白发布了新的文献求助30
28秒前
30秒前
今后应助shimenwanzhao采纳,获得10
30秒前
鄂海菡完成签到,获得积分10
30秒前
高源发布了新的文献求助10
34秒前
邦邦发布了新的文献求助10
35秒前
36秒前
在水一方应助亦玉采纳,获得10
38秒前
氿囶发布了新的文献求助10
39秒前
40秒前
大个应助科研狗采纳,获得10
40秒前
熊猫小肿完成签到,获得积分10
41秒前
42秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343110
求助须知:如何正确求助?哪些是违规求助? 2970174
关于积分的说明 8642934
捐赠科研通 2650115
什么是DOI,文献DOI怎么找? 1451132
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407