Experimental Study and Machine Learning-Based Prediction of the Abrasion Resistance of Manufactured Sand Concrete

磨损(机械) 材料科学 岩土工程 复合材料 结构工程 工程类 计算机科学 机器学习 法律工程学
作者
Xubo Xu,Jicheng Xie,Yasen Tang,Liufen Luo,Zheng Chen,Jiawen Li
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 3433-3433 被引量:1
标识
DOI:10.3390/buildings14113433
摘要

To systematically analyze the impact of manufactured sand on the abrasion resistance of concrete, this paper investigates the correlation between sand type, sand ratio, stone powder content, compressive strength, and the abrasion resistance of manufactured sand concrete. Grey correlation analysis was conducted to assess the impact priority of each factor affecting the abrasion resistance, and prediction models for the abrasion resistance were developed using XGBoost, random forest, AdaBoost, and gradient boosting. The results indicate that compared to river sand concrete, C30 and C40 concrete prepared with limestone and diabase manufactured sand has 20% higher abrasion resistance due to the presence of stone powder and higher roughness and solidity. Within the range of 0.40 to 0.44, a lower sand ratio leads to higher abrasion resistance. For concrete prepared with manufactured sand containing 5% to 11% stone powder, the best abrasion resistance can be attained at a stone powder content of 9%, and microscopic analysis suggests the highest concrete density at this level. According to grey system theory, the influence of each affecting factor on the abrasion resistance follows the order: sand ratio > crushing value > roughness > compressive strength > stone powder content > 0.6. Compared to gradient boosting, random forest, and AdaBoost models, the XGBoost model adopted in this study showed relatively higher R2 and lower RMSE in both the training and testing sets, which proved its higher accuracy in predicting the abrasion loss of manufactured sand concrete. The machine learning models offer some guidance for predicting and enhancing the abrasion resistance of manufactured sand concrete in practical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的猫发布了新的文献求助10
刚刚
张倩完成签到,获得积分10
1秒前
易俊发布了新的文献求助10
1秒前
yi5feng完成签到,获得积分10
1秒前
Dsunflower完成签到 ,获得积分10
1秒前
无花果应助拓跋箴采纳,获得10
1秒前
1秒前
2秒前
2秒前
客厅狂欢完成签到,获得积分10
2秒前
放青松完成签到,获得积分10
2秒前
Harry完成签到,获得积分10
2秒前
冷静白晴完成签到,获得积分10
3秒前
啥也不会完成签到,获得积分10
3秒前
Ava应助zsg采纳,获得10
4秒前
Akim应助zys采纳,获得10
4秒前
4秒前
等待完成签到 ,获得积分10
5秒前
ember6发布了新的文献求助10
5秒前
青木发布了新的文献求助10
5秒前
风信子完成签到,获得积分10
5秒前
biomds完成签到,获得积分10
6秒前
荔枝味果冻完成签到,获得积分10
6秒前
yznfly应助七月流火采纳,获得20
6秒前
6秒前
7秒前
Ryan发布了新的文献求助10
7秒前
8秒前
嗑盐废物发布了新的文献求助10
8秒前
Aggie完成签到,获得积分10
8秒前
JamesPei应助QZZ采纳,获得10
8秒前
易俊完成签到,获得积分10
9秒前
wanci发布了新的文献求助10
9秒前
深情安青应助May采纳,获得30
10秒前
10秒前
boluohu发布了新的文献求助50
10秒前
上官若男应助完美傀斗采纳,获得10
11秒前
隐形曼青应助蘅大爷采纳,获得10
11秒前
征途完成签到,获得积分20
11秒前
张达完成签到 ,获得积分20
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977