弗氏柠檬酸杆菌
生物
基因组岛
水平基因转移
遗传学
质粒
毒力
流动遗传元素
基因组
抗药性
人口
基因
多重耐药
抗生素耐药性
插入顺序
微生物学
肺炎克雷伯菌
大肠杆菌
转座因子
抗生素
医学
环境卫生
作者
Mujie Zhang,Zhiqiu Yin,Baozhu Chen,Zhanpeng Yu,Jiaxin Liang,Tian Xiaoyan,Defu Li,Xiao-yan Deng,Peng Liang
标识
DOI:10.1128/spectrum.04254-23
摘要
ABSTRACT The emergence of multidrug-resistant Citrobacter freundii poses a significant threat to public health. C. freundii isolates were collected from clinical patients in a Chinese hospital during 2020–2022. An unusual strain, GMU8049, was not susceptible to any of the antibiotics tested, including the novel β-lactam/β-lactamase inhibitor combination ceftazidime-avibactam. Whole-genome sequencing (WGS) revealed that GMU8049 harbors a circular chromosome belonging to the rare ST257 and an IncX3 resistance plasmid. Genomic analysis revealed the coexistence of two β-lactamase genes, including plasmid-mediated bla NDM-1 and chromosomal bla CMY encoding a novel CMY variant, combined with an outer membrane porin deficiency, which may account for the extreme resistance to β-lactams. Conjugation experiment confirmed that the bla NDM-1 resistance gene located on pGMU8049 could be successfully transferred to Escherichia coli EC600. The novel CMY variant had an amino acid substitution at position 106 (N106S) compared to the closely related CMY-51. Additionally, a GMU8049-specific truncation in an OmpK37 variant that produces a premature stop codon. Moreover, a variety of chromosome-located efflux pump coding genes and virulence-related genes were also identified. Analysis of strain GMU8049 in the context of other C. freundii strains reveals an open pan-genome and the presence of mobile genetic elements that can mediate horizontal gene transfer of antimicrobial resistance and virulence genes. Our work provides comprehensive insights into the genetic mechanisms of highly resistant C. freundii , highlighting the importance of genomic surveillance of this opportunistic pathogen as a high-risk population for emerging resistance and pathogenicity. IMPORTANCE Emerging pathogens exhibiting multi-, extremely, and pan-drug resistance are a major concern for hospitalized patients and the healthcare community due to limited antimicrobial treatment options and the potential for spread. Genomic technologies have enabled clinical surveillance of emerging pathogens and modeling of the evolution and transmission of antimicrobial resistance and virulence. Here, we report the genomic characterization of an extremely drug-resistant ST257 Citrobacter freundii clinical isolate. Genomic analysis of GMU8049 with a rare ST type and unusual phenotypes can provide information on how this extremely resistant clinical isolate has evolved, including the acquisition of bla NDM-1 via the IncX3 plasmid and accumulation through chromosomal mutations leading to a novel CMY variant and deficiency of the outer membrane porin OmpK37. Our work highlights that the emergence of extremely resistant C. freundii poses a significant challenge to the treatment of clinical infections. Therefore, great efforts must be made to specifically monitor this opportunistic pathogen.
科研通智能强力驱动
Strongly Powered by AbleSci AI