Deep learning artificial neural network framework to optimize the adsorption capacity of 3-nitrophenol using carbonaceous material obtained from biomass waste

生物量(生态学) 吸附 人工神经网络 硝基苯酚 计算机科学 环境科学 制浆造纸工业 工艺工程 化学工程 废物管理 人工智能 化学 工程类 生物 有机化学 催化作用 农学
作者
Rasikh Tariq,Mohamed Abatal,Joel Vargas,Alma Yolanda Vázquez-Sánchez
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-70989-0
摘要

The presence of toxic chemicals in water, including heavy metals like mercury and lead, organic pollutants such as pesticides, and industrial chemicals from runoff and discharges, poses critical public health and environmental risks leading to severe health issues and ecosystem damage; education plays a crucial role in mitigating these effects by enhancing awareness, promoting sustainable practices, and integrating environmental science into curricula to empower individuals to address and advocate for effective solutions to water pollution. However, the educational transformation should be accompanied with a technical process which can be eventually transferred to society to empower environmental education. In this study, carbonaceous material derived from Haematoxylum campechianum (CM-HC) was utilized for removing 3-nitrophenol (3-Nph) from aqueous solutions. The novelty of this research utilizes Haematoxylum campechianum bark and coconut shell, abundant agricultural wastes in Campeche, Mexico, for toxin removal, enhancing the adsorption process through artificial neural networks and genetic algorithms to optimize conditions and maximize the absorption efficiency. CM-HC's surface morphology was analyzed using scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and pHpzc. Kinetic models including pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich were applied to fit the data. Adsorption isotherms were determined at varying pH (3-8), adsorbent dosages (2-10 g/L), and temperatures (300.15-330.15 K), employing Langmuir, Freundlich, Temkin, and Redlich-Peterson models. PSO kinetics demonstrated a good fit (R

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aprilapple完成签到,获得积分10
刚刚
1秒前
song发布了新的文献求助10
1秒前
兴奋的发卡完成签到 ,获得积分10
2秒前
自觉翠安应助qiuxiali123采纳,获得10
2秒前
4秒前
hezhuyou完成签到,获得积分20
4秒前
飞乐扣完成签到 ,获得积分10
4秒前
buno应助屈昭阳采纳,获得10
4秒前
优美的觅珍完成签到,获得积分20
4秒前
冯佳祥发布了新的文献求助10
4秒前
aa发布了新的文献求助10
4秒前
852应助一只肥牛采纳,获得10
5秒前
lewis17发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
伯赏夜南发布了新的文献求助10
5秒前
orixero应助Niuniu采纳,获得10
5秒前
雪雪子完成签到,获得积分10
6秒前
6秒前
6秒前
胖狗完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
Owen应助edtaa采纳,获得10
8秒前
万能图书馆应助orange采纳,获得10
9秒前
Yu完成签到,获得积分10
9秒前
221发布了新的文献求助10
10秒前
znn发布了新的文献求助10
10秒前
10秒前
maq完成签到,获得积分10
10秒前
刚国忠发布了新的文献求助10
10秒前
zzz完成签到,获得积分10
11秒前
霸气的忆丹完成签到,获得积分10
11秒前
韩麒嘉发布了新的文献求助10
11秒前
11秒前
11秒前
bingyv发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836