Deep learning artificial neural network framework to optimize the adsorption capacity of 3-nitrophenol using carbonaceous material obtained from biomass waste

生物量(生态学) 吸附 人工神经网络 硝基苯酚 计算机科学 环境科学 制浆造纸工业 工艺工程 化学工程 废物管理 人工智能 化学 工程类 生物 有机化学 催化作用 农学
作者
Rasikh Tariq,Mohamed Abatal,Joel Vargas,Alma Yolanda Vázquez-Sánchez
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-70989-0
摘要

The presence of toxic chemicals in water, including heavy metals like mercury and lead, organic pollutants such as pesticides, and industrial chemicals from runoff and discharges, poses critical public health and environmental risks leading to severe health issues and ecosystem damage; education plays a crucial role in mitigating these effects by enhancing awareness, promoting sustainable practices, and integrating environmental science into curricula to empower individuals to address and advocate for effective solutions to water pollution. However, the educational transformation should be accompanied with a technical process which can be eventually transferred to society to empower environmental education. In this study, carbonaceous material derived from Haematoxylum campechianum (CM-HC) was utilized for removing 3-nitrophenol (3-Nph) from aqueous solutions. The novelty of this research utilizes Haematoxylum campechianum bark and coconut shell, abundant agricultural wastes in Campeche, Mexico, for toxin removal, enhancing the adsorption process through artificial neural networks and genetic algorithms to optimize conditions and maximize the absorption efficiency. CM-HC's surface morphology was analyzed using scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and pHpzc. Kinetic models including pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich were applied to fit the data. Adsorption isotherms were determined at varying pH (3-8), adsorbent dosages (2-10 g/L), and temperatures (300.15-330.15 K), employing Langmuir, Freundlich, Temkin, and Redlich-Peterson models. PSO kinetics demonstrated a good fit (R

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
大乐发布了新的文献求助10
刚刚
zzx1995发布了新的文献求助20
刚刚
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
风中冰香应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
英姑应助无情胡萝卜采纳,获得10
1秒前
关关过应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
关关过应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
风中冰香应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
田様应助黄婷萱采纳,获得10
2秒前
美好蜻蜓完成签到,获得积分10
2秒前
听话的清发布了新的文献求助100
2秒前
万能图书馆应助张张采纳,获得10
2秒前
俭朴亦凝发布了新的文献求助30
3秒前
Vintoe完成签到 ,获得积分10
3秒前
浮游应助小白采纳,获得10
3秒前
昏睡的蟠桃应助sam采纳,获得200
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485