Deep learning artificial neural network framework to optimize the adsorption capacity of 3-nitrophenol using carbonaceous material obtained from biomass waste

生物量(生态学) 吸附 人工神经网络 硝基苯酚 计算机科学 环境科学 制浆造纸工业 工艺工程 化学工程 废物管理 人工智能 化学 工程类 生物 有机化学 催化作用 农学
作者
Rasikh Tariq,Mohamed Abatal,Joel Vargas,Alma Yolanda Vázquez-Sánchez
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-70989-0
摘要

The presence of toxic chemicals in water, including heavy metals like mercury and lead, organic pollutants such as pesticides, and industrial chemicals from runoff and discharges, poses critical public health and environmental risks leading to severe health issues and ecosystem damage; education plays a crucial role in mitigating these effects by enhancing awareness, promoting sustainable practices, and integrating environmental science into curricula to empower individuals to address and advocate for effective solutions to water pollution. However, the educational transformation should be accompanied with a technical process which can be eventually transferred to society to empower environmental education. In this study, carbonaceous material derived from Haematoxylum campechianum (CM-HC) was utilized for removing 3-nitrophenol (3-Nph) from aqueous solutions. The novelty of this research utilizes Haematoxylum campechianum bark and coconut shell, abundant agricultural wastes in Campeche, Mexico, for toxin removal, enhancing the adsorption process through artificial neural networks and genetic algorithms to optimize conditions and maximize the absorption efficiency. CM-HC's surface morphology was analyzed using scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and pHpzc. Kinetic models including pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich were applied to fit the data. Adsorption isotherms were determined at varying pH (3-8), adsorbent dosages (2-10 g/L), and temperatures (300.15-330.15 K), employing Langmuir, Freundlich, Temkin, and Redlich-Peterson models. PSO kinetics demonstrated a good fit (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助lin采纳,获得30
刚刚
niuma发布了新的文献求助10
刚刚
芝士有点咸发布了新的文献求助200
刚刚
饱满秋完成签到,获得积分10
1秒前
Hello应助张丁采纳,获得10
2秒前
B2B发布了新的文献求助30
3秒前
3秒前
Zuguo完成签到,获得积分10
3秒前
锅锅发布了新的文献求助10
4秒前
Ula发布了新的文献求助10
4秒前
开放灭绝完成签到,获得积分10
6秒前
大个应助标致半烟采纳,获得20
7秒前
平淡的碧菡完成签到,获得积分10
7秒前
美好斓发布了新的文献求助30
7秒前
7秒前
Jasper应助hm采纳,获得10
7秒前
jincheng完成签到,获得积分10
8秒前
赫哲瀚发布了新的文献求助30
8秒前
10秒前
11秒前
cyh完成签到,获得积分10
11秒前
坚强枫完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
傅傅发布了新的文献求助30
12秒前
13秒前
kim发布了新的文献求助10
15秒前
受伤的小松鼠应助一沙采纳,获得10
15秒前
15秒前
16秒前
科研通AI2S应助扶余山本采纳,获得10
16秒前
Lucas应助拉面小丸子采纳,获得10
16秒前
Fengh发布了新的文献求助10
17秒前
wy.he举报涵Allen求助涉嫌违规
17秒前
万椿发布了新的文献求助10
17秒前
17秒前
18秒前
若冰完成签到,获得积分10
18秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953