Deep learning artificial neural network framework to optimize the adsorption capacity of 3-nitrophenol using carbonaceous material obtained from biomass waste

生物量(生态学) 吸附 人工神经网络 硝基苯酚 计算机科学 环境科学 制浆造纸工业 工艺工程 化学工程 废物管理 人工智能 化学 工程类 生物 有机化学 催化作用 农学
作者
Rasikh Tariq,Mohamed Abatal,Joel Vargas,Alma Yolanda Vázquez-Sánchez
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-70989-0
摘要

The presence of toxic chemicals in water, including heavy metals like mercury and lead, organic pollutants such as pesticides, and industrial chemicals from runoff and discharges, poses critical public health and environmental risks leading to severe health issues and ecosystem damage; education plays a crucial role in mitigating these effects by enhancing awareness, promoting sustainable practices, and integrating environmental science into curricula to empower individuals to address and advocate for effective solutions to water pollution. However, the educational transformation should be accompanied with a technical process which can be eventually transferred to society to empower environmental education. In this study, carbonaceous material derived from Haematoxylum campechianum (CM-HC) was utilized for removing 3-nitrophenol (3-Nph) from aqueous solutions. The novelty of this research utilizes Haematoxylum campechianum bark and coconut shell, abundant agricultural wastes in Campeche, Mexico, for toxin removal, enhancing the adsorption process through artificial neural networks and genetic algorithms to optimize conditions and maximize the absorption efficiency. CM-HC's surface morphology was analyzed using scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and pHpzc. Kinetic models including pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich were applied to fit the data. Adsorption isotherms were determined at varying pH (3-8), adsorbent dosages (2-10 g/L), and temperatures (300.15-330.15 K), employing Langmuir, Freundlich, Temkin, and Redlich-Peterson models. PSO kinetics demonstrated a good fit (R

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助心灵美的幼荷采纳,获得10
刚刚
ARNI发布了新的文献求助10
4秒前
夺命大猩猩完成签到,获得积分20
4秒前
英俊的铭应助绿色心情采纳,获得10
4秒前
古月发布了新的文献求助10
5秒前
枫华完成签到,获得积分10
5秒前
笑点低冰夏完成签到,获得积分10
7秒前
yanjiawen完成签到 ,获得积分20
7秒前
sci关闭了sci文献求助
8秒前
田様应助夺命大猩猩采纳,获得10
9秒前
sas完成签到,获得积分10
9秒前
Juli发布了新的文献求助10
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
无名老大应助科研通管家采纳,获得10
10秒前
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
15秒前
happy完成签到,获得积分10
16秒前
17秒前
Candice应助白华苍松采纳,获得10
18秒前
devin完成签到,获得积分10
20秒前
英俊的铭应助蝶步韶华采纳,获得10
21秒前
21秒前
12发布了新的文献求助10
21秒前
Charon完成签到,获得积分10
23秒前
Hello应助mbf采纳,获得10
23秒前
24秒前
在水一方应助陈丫采纳,获得10
24秒前
隐形曼青应助fubi采纳,获得10
24秒前
24秒前
刘桑桑完成签到,获得积分10
25秒前
奋斗垣完成签到 ,获得积分10
26秒前
碗碗发布了新的文献求助10
26秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341041
求助须知:如何正确求助?哪些是违规求助? 2968852
关于积分的说明 8635308
捐赠科研通 2648378
什么是DOI,文献DOI怎么找? 1450137
科研通“疑难数据库(出版商)”最低求助积分说明 671738
邀请新用户注册赠送积分活动 660852