Degradation behavior of galvanostatic and galvanodynamic cells for hydrogen production from high temperature electrolysis of water

电解质 制氢 过电位 材料科学 电解 降级(电信) 电解槽 高温电解 可再生能源 电解水 电化学 储能 化学工程 电极 化学 热力学 电气工程 物理 有机化学 物理化学 工程类 功率(物理)
作者
Cameron Priest,Nicholas Kane,Qian Zhang,Joshua Gomez,Jeremy Hartvigsen,Lu‐Cun Wang,Dong Ding,Micah Casteel,Gang Wu
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:86: 374-381 被引量:2
标识
DOI:10.1016/j.ijhydene.2024.08.019
摘要

High temperature electrolysis of water using solid oxide electrochemical cells (SOEC) is a promising technology for hydrogen production with high energy efficiency and may promote decarbonization when coupled with renewable energy sources and excess heat from nuclear reactors. Apart from the technoeconomic considerations, commercial deployment of this technology critically depends on the long-term performance and durability of SOEC cells/stacks, especially under dynamic operations to withstand the intermittency of renewable energy. Herein, SOEC operation was conducted under galvanodynamic conditions and compared with galvanostatic cells to examine the effect on degradation behavior at an average current density of −0.75 A cm−2 at 750 °C. While dynamic operation shows no significant impact on the overall degradation rates compared to constant current operation, minor performance improvement was observed at potentials above 1.5 V when switched to galvanodynamic mode. The relatively lower overpotential during dynamic operation could not be explained by the negligible changes in the electrochemical impedance or cell temperature. Multiphysics modeling reveals that the oxygen partial pressure (PO2) in the electrolyte oscillates with the alternating current density under dynamic operations. The minor improvement in cell performance under dynamic mode might be associated with the relatively lower PO2 buildup as compared with that under galvanostatic operation. In addition, dynamic operation at high frequencies could effectively lower the extreme PO2 in the electrolyte, thus relieving stresses in the cells and alleviating cell degradation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
haihe完成签到,获得积分10
刚刚
刚刚
慕青应助谦让的樱采纳,获得10
1秒前
zys_hqu完成签到,获得积分20
1秒前
3秒前
舒适的芹发布了新的文献求助10
3秒前
haihe发布了新的文献求助10
4秒前
4秒前
5秒前
谦让友绿发布了新的文献求助10
5秒前
FF完成签到 ,获得积分20
6秒前
6秒前
sunset发布了新的文献求助10
6秒前
8秒前
务实青筠完成签到 ,获得积分10
9秒前
ZHIXIANGWENG发布了新的文献求助10
9秒前
9秒前
9秒前
我要发sci完成签到,获得积分20
10秒前
10秒前
贪玩的墨镜完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
感动花卷发布了新的文献求助10
14秒前
传统的复天完成签到,获得积分10
15秒前
16秒前
Peissen发布了新的文献求助10
16秒前
16秒前
ZHIXIANGWENG发布了新的文献求助10
16秒前
bkagyin应助luxiuzhen采纳,获得10
17秒前
张杠杠发布了新的文献求助10
17秒前
xinxin完成签到,获得积分10
18秒前
19秒前
19秒前
还单身的若蕊完成签到,获得积分10
19秒前
19秒前
晾猫人发布了新的文献求助30
20秒前
研友_VZG7GZ应助哦妈妈咪呀采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461678
求助须知:如何正确求助?哪些是违规求助? 3055353
关于积分的说明 9047590
捐赠科研通 2745170
什么是DOI,文献DOI怎么找? 1506011
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695380