Degradation behavior of galvanostatic and galvanodynamic cells for hydrogen production from high temperature electrolysis of water

电解质 制氢 过电位 材料科学 电解 降级(电信) 电解槽 高温电解 可再生能源 电解水 电化学 储能 化学工程 电极 化学 热力学 电气工程 物理 工程类 物理化学 功率(物理) 有机化学
作者
Cameron Priest,Nicholas Kane,Qian Zhang,Joshua Gomez,Jeremy Hartvigsen,Lu‐Cun Wang,Dong Ding,Micah Casteel,Gang Wu
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:86: 374-381 被引量:2
标识
DOI:10.1016/j.ijhydene.2024.08.019
摘要

High temperature electrolysis of water using solid oxide electrochemical cells (SOEC) is a promising technology for hydrogen production with high energy efficiency and may promote decarbonization when coupled with renewable energy sources and excess heat from nuclear reactors. Apart from the technoeconomic considerations, commercial deployment of this technology critically depends on the long-term performance and durability of SOEC cells/stacks, especially under dynamic operations to withstand the intermittency of renewable energy. Herein, SOEC operation was conducted under galvanodynamic conditions and compared with galvanostatic cells to examine the effect on degradation behavior at an average current density of −0.75 A cm−2 at 750 °C. While dynamic operation shows no significant impact on the overall degradation rates compared to constant current operation, minor performance improvement was observed at potentials above 1.5 V when switched to galvanodynamic mode. The relatively lower overpotential during dynamic operation could not be explained by the negligible changes in the electrochemical impedance or cell temperature. Multiphysics modeling reveals that the oxygen partial pressure (PO2) in the electrolyte oscillates with the alternating current density under dynamic operations. The minor improvement in cell performance under dynamic mode might be associated with the relatively lower PO2 buildup as compared with that under galvanostatic operation. In addition, dynamic operation at high frequencies could effectively lower the extreme PO2 in the electrolyte, thus relieving stresses in the cells and alleviating cell degradation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到,获得积分10
1秒前
Owen应助闪闪穆采纳,获得10
1秒前
周肆发布了新的文献求助10
1秒前
jjr应助洛城l采纳,获得10
2秒前
STARY完成签到,获得积分20
3秒前
范范范完成签到,获得积分10
3秒前
3秒前
Andone完成签到,获得积分10
4秒前
luojimao完成签到,获得积分10
5秒前
科研通AI6应助我爱吃肉采纳,获得10
5秒前
Wei完成签到,获得积分10
5秒前
wanci应助zrw采纳,获得10
5秒前
6秒前
Criminology34应助昭昭采纳,获得20
6秒前
6秒前
Tamarin完成签到,获得积分10
6秒前
STARY发布了新的文献求助10
6秒前
汉堡包应助周肆采纳,获得10
8秒前
9秒前
万能图书馆应助Wei采纳,获得30
9秒前
小瀦櫫完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
十分喜欢完成签到,获得积分10
12秒前
暮色完成签到,获得积分10
13秒前
13秒前
13秒前
昆仑发布了新的文献求助10
14秒前
14秒前
16秒前
zxcxcxzcxz发布了新的文献求助10
16秒前
害羞小蜜蜂完成签到,获得积分10
16秒前
龚广山发布了新的文献求助10
16秒前
思源应助开朗的幻桃采纳,获得10
18秒前
李昕123发布了新的文献求助30
18秒前
JamesPei应助安详岱周采纳,获得10
21秒前
cc完成签到 ,获得积分10
21秒前
21秒前
蔓越莓完成签到 ,获得积分10
21秒前
合适的如凡完成签到 ,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598857
求助须知:如何正确求助?哪些是违规求助? 4684254
关于积分的说明 14834399
捐赠科研通 4665126
什么是DOI,文献DOI怎么找? 2537490
邀请新用户注册赠送积分活动 1504943
关于科研通互助平台的介绍 1470655