材料科学
气凝胶
碳化
保温
复合材料
碳纳米纤维
多孔性
碳纤维
微观结构
化学工程
扫描电子显微镜
碳纳米管
图层(电子)
工程类
复合数
作者
Hongli Liu,Haijie Feng,Peng Chu,Weiqiang Xie,Xuan Wang,Zhiqiang Zhang,Wang Shaoquan
标识
DOI:10.1016/j.ceramint.2024.08.055
摘要
A coral-like network carbon aerogel was synthesized by introducing acid-modified carbon nanofibers (a-CNF) into phenolic (PR) aerogel through chemical grafting, followed by high-temperature carbonization. The bonding interaction between a-CNF and PR was analyzed by FT-IR spectroscopy. The microstructure of a-CNF/PR composite aerogel (a-CNF/PRA) was studied by SEM and pore structure analysis. The results showed that introducing 5 wt% of a-CNF was most favorable for forming a porous network of a-CNF/PRA. SEM photographs and pore structure analysis indicated that a-CNF/C composite aerogel (a-CNF/CA) developed a stable porous skeletal structure during carbonization. TEM images revealed that the complete porous skeleton consisted of a-CNF encapsulated by carbon layers. The carbonization shrinkage of a-CNF/CA was only 26.53% due to the presence of a-CNF as the skeleton support. Compared to carbon aerogel, a-CNF/CA exhibited lower density (0.072 g cm−3), thermal conductivity (0.0452 W m−1 K−1), and higher compressive strength (up to 3.26 MPa) up to 3.26 MPa than that of carbon aerogel (1.21 MPa). These findings confirmed the excellent mechanical and thermal insulation properties of a-CNF/CA.
科研通智能强力驱动
Strongly Powered by AbleSci AI