Deep learning application in prediction of cancer molecular alterations based on pathological images: a bibliographic analysis via CiteSpace

病态的 血液学 癌症 内科学 医学 肿瘤科 人工智能 医学物理学 计算机科学
作者
Yu Xiaojian,Qu Zhanbo,Jian Chu,Zefeng Wang,Jian Liu,Liu Jin,Yuefen Pan,Shuwen Han
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:150 (10)
标识
DOI:10.1007/s00432-024-05992-z
摘要

The advancements in artificial intelligence (AI) technology for image recognition were propelling molecular pathology research into a new era. To summarize the hot spots and research trends in the field of molecular pathology image recognition. Relevant articles from January 1st, 2010, to August 25th, 2023, were retrieved from the Web of Science Core Collection. Subsequently, CiteSpace was employed for bibliometric and visual analysis, generating diverse network diagrams illustrating keywords, highly cited references, hot topics, and research trends. A total of 110 relevant articles were extracted from a pool of 10,205 articles. The overall publication count exhibited a rising trend each year. The leading contributors in terms of institutions, countries, and authors were Maastricht University (11 articles), the United States (38 articles), and Kather Jacob Nicholas (9 articles), respectively. Half of the top ten research institutions, based on publication volume, were affiliated with Germany. The most frequently cited article was authored by Nicolas Coudray et al. accumulating 703 citations. The keyword "Deep learning" had the highest frequency in 2019. Notably, the highlighted keywords from 2022 to 2023 included "microsatellite instability", and there were 21 articles focusing on utilizing algorithms to recognize microsatellite instability (MSI) in colorectal cancer (CRC) pathological images. The use of DL is expected to provide a new strategy to effectively solve the current problem of time-consuming and expensive molecular pathology detection. Therefore, further research is needed to address issues, such as data quality and standardization, model interpretability, and resource and infrastructure requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zack完成签到,获得积分10
1秒前
slowslow发布了新的文献求助10
1秒前
2秒前
直率清炎完成签到,获得积分20
3秒前
Cacilhas完成签到 ,获得积分10
4秒前
7秒前
9秒前
foreknowledge完成签到,获得积分10
12秒前
14秒前
zz关闭了zz文献求助
16秒前
xiaoqi666完成签到 ,获得积分10
21秒前
21秒前
webryy关注了科研通微信公众号
21秒前
22秒前
希望天下0贩的0应助sheep采纳,获得10
24秒前
书芹完成签到,获得积分10
24秒前
linnea完成签到,获得积分10
24秒前
25秒前
nangua发布了新的文献求助10
26秒前
linxm完成签到,获得积分20
28秒前
科研通AI2S应助mbf采纳,获得10
29秒前
kk发布了新的文献求助10
29秒前
Miss_Q完成签到 ,获得积分10
32秒前
at发布了新的文献求助10
33秒前
win完成签到,获得积分10
34秒前
34秒前
mhl11应助wenbin采纳,获得10
35秒前
sci发布了新的文献求助10
36秒前
37秒前
超帅尔康发布了新的文献求助10
38秒前
39秒前
39秒前
Polymer72应助nangua采纳,获得10
40秒前
烟花应助nangua采纳,获得10
40秒前
不要晚安的寒流完成签到,获得积分10
41秒前
42秒前
ll应助超帅尔康采纳,获得20
43秒前
45秒前
月初完成签到,获得积分10
45秒前
linxm发布了新的文献求助10
46秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341032
求助须知:如何正确求助?哪些是违规求助? 2968833
关于积分的说明 8635241
捐赠科研通 2648355
什么是DOI,文献DOI怎么找? 1450125
科研通“疑难数据库(出版商)”最低求助积分说明 671738
邀请新用户注册赠送积分活动 660838