CroMAM: A Cross-Magnification Attention Feature Fusion Model for Predicting Genetic Status and Survival of Gliomas using Histological Images

放大倍数 特征(语言学) 人工智能 胶质瘤 计算机科学 模式识别(心理学) 胶质母细胞瘤 特征提取 医学 癌症研究 哲学 语言学
作者
Jiaqi Guo,Peng Xu,Yuankui Wu,Tao Yin,Chu Han,Jiatai Lin,Ke Zhao,Zaiyi Liu,Wenbin Liu,Cheng Lu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3431471
摘要

Predicting the gene mutation status in whole slide images (WSI) is crucial for the clinical treatment, cancer management, and research of gliomas. With advancements in CNN and Transformer algorithms, several promising models have been proposed. However, existing studies have paid little attention on fusing multi-magnification information, and the model requires processing all patches from a whole slide image. In this paper, we propose a cross-magnification attention model called CroMAM for predicting the genetic status and survival of gliomas. The CroMAM first utilizes a systematic patch extraction module to sample a subset of representative patches for downstream analysis. Next, the CroMAM applies Swin Transformer to extract local and global features from patches at different magnifications, followed by acquiring high-level features and dependencies among single-magnification patches through the application of a Vision Transformer. Subsequently, the CroMAM exchanges the integrated feature representations of different magnifications and encourage the integrated feature representations to learn the discriminative information from other magnification. Additionally, we design a cross-magnification attention analysis method to examine the effect of cross-magnification attention quantitatively and qualitatively which increases the model's explainability. To validate the performance of the model, we compare the proposed model with other multi-magnification feature fusion models on three tasks in two datasets. Extensive experiments demonstrate that the proposed model achieves state-of-the-art performance in predicting the genetic status and survival of gliomas. The implementation of the CroMAM will be publicly available upon the acceptance of this manuscript at https://github.com/GuoJisen/CroMAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aurora.H完成签到,获得积分10
2秒前
最初的远方完成签到,获得积分10
2秒前
3秒前
4秒前
yyy完成签到,获得积分10
4秒前
林林完成签到 ,获得积分10
4秒前
zqingqing发布了新的文献求助10
5秒前
6秒前
思源应助海大星采纳,获得10
6秒前
Lucas应助西奥采纳,获得10
7秒前
上官若男应助潇洒的剑愁采纳,获得10
7秒前
Kenzonvay发布了新的文献求助10
7秒前
7秒前
guangshuang完成签到,获得积分10
9秒前
zzzzyyy发布了新的文献求助200
9秒前
11秒前
zxj发布了新的文献求助10
11秒前
11秒前
11秒前
HCLonely应助guangshuang采纳,获得10
11秒前
李健的小迷弟应助qiao采纳,获得10
11秒前
12秒前
13秒前
77完成签到 ,获得积分10
13秒前
小蘑菇应助22222采纳,获得10
13秒前
无私迎海发布了新的文献求助10
13秒前
orixero应助Faceman采纳,获得10
14秒前
14秒前
14秒前
15秒前
Sparkle完成签到,获得积分10
15秒前
潇洒的剑愁完成签到,获得积分20
15秒前
16秒前
16秒前
M旭旭发布了新的文献求助10
17秒前
大家好完成签到 ,获得积分10
17秒前
滴滴嘟发布了新的文献求助10
17秒前
17秒前
Leemon33发布了新的文献求助10
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3225072
求助须知:如何正确求助?哪些是违规求助? 2873405
关于积分的说明 8185186
捐赠科研通 2540959
什么是DOI,文献DOI怎么找? 1371973
科研通“疑难数据库(出版商)”最低求助积分说明 646341
邀请新用户注册赠送积分活动 620463