Unified Multi-Modal Image Synthesis for Missing Modality Imputation

计算机科学 情态动词 人工智能 模态(人机交互) 插补(统计学) 计算机视觉 图像(数学) 缺少数据 模式识别(心理学) 机器学习 化学 高分子化学
作者
Yue Zhang,Chengtao Peng,Qiuli Wang,Dan Song,Kaiyan Li,S. Kevin Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tmi.2024.3424785
摘要

Multi-modal medical images provide complementary soft-tissue characteristics that aid in the screening and diagnosis of diseases. However, limited scanning time, image corruption and various imaging protocols often result in incomplete multi-modal images, thus limiting the usage of multi-modal data for clinical purposes. To address this issue, in this paper, we propose a novel unified multi-modal image synthesis method for missing modality imputation. Our method overall takes a generative adversarial architecture, which aims to synthesize missing modalities from any combination of available ones with a single model. To this end, we specifically design a Commonality- and Discrepancy-Sensitive Encoder for the generator to exploit both modality-invariant and specific information contained in input modalities. The incorporation of both types of information facilitates the generation of images with consistent anatomy and realistic details of the desired distribution. Besides, we propose a Dynamic Feature Unification Module to integrate information from a varying number of available modalities, which enables the network to be robust to random missing modalities. The module performs both hard integration and soft integration, ensuring the effectiveness of feature combination while avoiding information loss. Verified on two public multi-modal magnetic resonance datasets, the proposed method is effective in handling various synthesis tasks and shows superior performance compared to previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习用账号完成签到,获得积分10
刚刚
深情安青应助jingcheng采纳,获得30
刚刚
1秒前
1212完成签到,获得积分10
1秒前
wbbb发布了新的文献求助30
1秒前
烽火发布了新的文献求助20
1秒前
1秒前
2秒前
2秒前
清脆如娆完成签到 ,获得积分10
2秒前
优雅冰蝶完成签到,获得积分10
3秒前
想发SCI发布了新的文献求助10
3秒前
3秒前
3秒前
可可可发布了新的文献求助10
4秒前
CipherSage应助林钟九采纳,获得10
5秒前
包包发布了新的文献求助10
5秒前
5秒前
羞涩的一凤完成签到,获得积分10
6秒前
乐观大雁发布了新的文献求助10
6秒前
烟花应助美好的元珊采纳,获得10
6秒前
顾矜应助11111采纳,获得10
6秒前
贺江逸完成签到,获得积分10
6秒前
冷静靖荷应助Aurinse采纳,获得10
7秒前
冷静靖荷应助Aurinse采纳,获得10
7秒前
科研通AI5应助去玩儿采纳,获得10
7秒前
五味子完成签到,获得积分10
8秒前
YYY发布了新的文献求助10
8秒前
朝茗森完成签到,获得积分10
9秒前
Lynn完成签到,获得积分0
9秒前
XXH完成签到 ,获得积分10
9秒前
9秒前
今后应助诚心的珠采纳,获得10
9秒前
10秒前
个性的紫菜应助ly采纳,获得20
10秒前
无聊完成签到,获得积分10
11秒前
爆米花应助想发SCI采纳,获得10
11秒前
11秒前
满当当发布了新的文献求助10
12秒前
优美从菡完成签到,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482967
求助须知:如何正确求助?哪些是违规求助? 3072430
关于积分的说明 9126657
捐赠科研通 2764067
什么是DOI,文献DOI怎么找? 1516839
邀请新用户注册赠送积分活动 701816
科研通“疑难数据库(出版商)”最低求助积分说明 700721