丁丙诺啡
阿片类药物使用障碍
药方
人工智能
机器学习
符号
逻辑回归
美沙酮
数学
医学
计算机科学
算法
类阿片
精神科
药理学
内科学
算术
受体
作者
Sajjad Fouladvand,Jeffery Talbert,Linda P. Dwoskin,Heather Bush,Amy Lynn Meadows,Lars E. Peterson,Yash R. Mishra,Steven K. Roggenkamp,Fei Wang,Ramakanth Kavuluru,Jin Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2023-07-01
卷期号:27 (7): 3589-3598
被引量:4
标识
DOI:10.1109/jbhi.2023.3265920
摘要
Opioid use disorder (OUD) is a leading cause of death in the United States placing a tremendous burden on patients, their families, and health care systems. Artificial intelligence (AI) can be harnessed with available healthcare data to produce automated OUD prediction tools. In this retrospective study, we developed AI based models for OUD prediction and showed that AI can predict OUD more effectively than existing clinical tools including the unweighted opioid risk tool (ORT). Data include 474,208 patients' data over 10 years; 269,748 were females with an average age of 56.78 years. Cases are prescription opioid users with at least one diagnosis of OUD or at least one prescription for buprenorphine or methadone. Controls are prescription opioid users with no OUD diagnoses or buprenorphine or methadone prescriptions. On 100 randomly selected test sets including 47,396 patients, our proposed transformer-based AI model can predict OUD more efficiently (AUC = 0.742 ± 0.021) compared to logistic regression (AUC = 0.651 ± 0.025), random forest (AUC = 0.679 ± 0.026), xgboost (AUC = 0.690 ± 0.027), long short-term memory model (AUC = 0.706 ± 0.026), transformer (AUC = 0.725 ± 0.024), and unweighted ORT model (AUC = 0.559 ± 0.025). Our results show that embedding AI algorithms into clinical care may assist clinicians in risk stratification and management of patients receiving opioid therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI