Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: definitions, advances, challenges, and future perspectives

遥感 激光雷达 植被(病理学) 背景(考古学) 土地覆盖 环境科学 计算机科学 地理 生态学 土地利用 病理 考古 生物 医学
作者
Linyuan Li,Xihan Mu,Hailan Jiang,Francesco Chianucci,Ronghai Hu,Wanjuan Song,Jianbo Qi,Shouyang Liu,Jiaxin Zhou,Ling Chen,Huaguo Huang,Guangjian Yan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 133-156 被引量:72
标识
DOI:10.1016/j.isprsjprs.2023.03.020
摘要

Vegetation cover fraction (fCover) and related quantities are basic yet critical vegetation structure variables in various disciplines and applications. Ground- and aerial-based proximal and remote sensing techniques have been widely adapted across multiple spatial extents. However, the definitions of fCover-related nomenclatures have not yet been fully standardized, leading to confusing terms and making comparing historic measures difficult. With the issues potentially arising from an increasing diversity of fCover and related quantities estimation methods and corresponding uncertainties, there is also a growing need to spread knowledge on the current advances, challenges, and perspectives, especially in the context of no such existing review for ground- and aerial- based estimation. This paper provides the current knowledge mainly concerning passive image-based methods and active light detection and ranging (LiDAR) -based methods. We first harmonized the definitions of fCover and its related quantities (e.g., effective canopy cover, crown cover, stratified vegetation cover, and canopy fraction). Secondly, the typical applications of fCover and related quantities over a range of scales, fields, and ecosystems were summarized. Thirdly yet importantly, we offered a comprehensive review of traditional non-imaging methods, image-based methods (e.g., segmentation, unmixing, and spectral retrieval), point cloud-based methods (e.g., rasterization), and LiDAR return-based methods (e.g., return number index and return intensity retrieval) across different platforms (i.e., ground, unmanned aerial vehicle (UAV) and airplane). Our investigation of fCover and related quantities estimation touches upon various vegetation ecosystems, including agriculture cropland, grassland, wetland, and forest. Finally, the current challenges and future directions were discussed, such as image signal processing under complex heterogeneous surfaces and stratified cover and non-photosynthesis cover retrieval. We, therefore, expect that this review may offer an insight into fCover and related quantities estimation and serve as a reference for remote sensing scientists, agronomists, silviculturists, and ecologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
渤大小mn发布了新的文献求助10
刚刚
1秒前
1秒前
starrism发布了新的文献求助10
1秒前
隐形曼青应助谦让的含海采纳,获得10
1秒前
沐沐完成签到,获得积分10
1秒前
云溪发布了新的文献求助10
2秒前
Dimples完成签到,获得积分10
2秒前
2秒前
dong发布了新的文献求助10
2秒前
今后应助老毛采纳,获得10
2秒前
3秒前
cuicy完成签到,获得积分10
3秒前
hdbys完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
可靠的西牛关注了科研通微信公众号
4秒前
万能图书馆应助sss采纳,获得10
4秒前
张英歌发布了新的文献求助10
5秒前
算命先生完成签到,获得积分10
5秒前
可爱的函函应助王女士采纳,获得10
5秒前
nannan发布了新的文献求助10
5秒前
5秒前
Ellen完成签到,获得积分10
6秒前
善学以致用应助fun采纳,获得10
6秒前
科研通AI6应助鳗鱼觅珍采纳,获得30
6秒前
Hello应助夏安采纳,获得10
6秒前
yeoyoo驳回了mono应助
6秒前
123完成签到,获得积分20
6秒前
7秒前
张肥肥发布了新的文献求助10
7秒前
7秒前
cuicy发布了新的文献求助10
7秒前
7秒前
领导范儿应助脱贫攻坚采纳,获得10
8秒前
科研通AI6应助钱钱采纳,获得10
8秒前
端庄沉鱼发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853