Deep learning for the automatic detection and segmentation of parotid gland tumors on MRI

分割 磁共振成像 人工智能 深度学习 交叉验证 医学 计算机科学 核医学 放射科
作者
Rongli Zhang,Lun M. Wong,Tiffany Y. So,Zongyou Cai,Qiao Deng,Yip Man Tsang,Qi Yong H. Ai,Ann D. King
出处
期刊:Oral Oncology [Elsevier BV]
卷期号:152: 106796-106796 被引量:2
标识
DOI:10.1016/j.oraloncology.2024.106796
摘要

Parotid gland tumors (PGTs) often occur as incidental findings on magnetic resonance images (MRI) that may be overlooked. This study aimed to construct and validate a deep learning model to automatically identify parotid glands (PGs) with a PGT from normal PGs, and in those with a PGT to segment the tumor. The nnUNet combined with a PG-specific post-processing procedure was used to develop the deep learning model trained on T1-weighed images (T1WI) in 311 patients (180 PGs with tumors and 442 normal PGs) and fat-suppressed (FS)-T2WI in 257 patients (125 PGs with tumors and 389 normal PGs), for detecting and segmenting PGTs with five-fold cross-validation. Additional validation set separated by time, comprising T1WI in 34 and FS-T2WI in 41 patients, was used to validate the model performance. To identify PGs with tumors from normal PGs, using combined T1WI and FS-T2WI, the deep learning model achieved an accuracy, sensitivity and specificity of 98.2% (497/506), 100% (119/119) and 97.7% (378/387), respectively, in the cross-validation set and 98.5% (67/68), 100% (20/20) and 97.9% (47/48), respectively, in the validation set. For patients with PGTs, automatic segmentation of PGTs on T1WI and FS-T2WI achieved mean dice coefficients of 86.1% and 84.2%, respectively, in the cross-validation set, and of 85.9% and 81.0%, respectively, in the validation set. The proposed deep learning model may assist the detection and segmentation of PGTs and, by acting as a second pair of eyes, ensure that incidentally detected PGTs on MRI are not missed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助czz014采纳,获得10
刚刚
1秒前
栀子完成签到,获得积分10
1秒前
1秒前
嘻嘻哈哈应助Xiaoxiao采纳,获得20
2秒前
小乌龟完成签到,获得积分10
2秒前
挽忆逍遥完成签到 ,获得积分10
2秒前
研究侠完成签到,获得积分10
3秒前
coolplex发布了新的文献求助10
3秒前
lsh发布了新的文献求助10
3秒前
3秒前
Owen应助哈哈哈哈采纳,获得10
4秒前
4秒前
QXR完成签到,获得积分10
4秒前
4秒前
小手冰凉完成签到,获得积分10
4秒前
共享精神应助陈柚瑾采纳,获得10
4秒前
CodeCraft应助鲤鱼凡松采纳,获得10
5秒前
琳琳发布了新的文献求助20
5秒前
完美世界应助mdjinij采纳,获得10
5秒前
顶呱呱完成签到 ,获得积分10
5秒前
酷波er应助zhuzhu的江湖采纳,获得10
5秒前
5秒前
wanci应助耶耶粘豆包采纳,获得10
6秒前
杳子尧发布了新的文献求助10
7秒前
威武外套完成签到,获得积分10
7秒前
充电宝应助cun采纳,获得10
8秒前
Mayily完成签到,获得积分10
8秒前
JamesPei应助DTP采纳,获得10
8秒前
梨子发布了新的文献求助200
8秒前
9秒前
田様应助Azyyyy采纳,获得10
9秒前
10秒前
impala发布了新的文献求助10
10秒前
10秒前
归尘发布了新的文献求助10
10秒前
xiaoxiao发布了新的文献求助10
10秒前
木木木发布了新的文献求助10
10秒前
CipherSage应助mimi采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874