Deep learning for the automatic detection and segmentation of parotid gland tumors on MRI

分割 磁共振成像 人工智能 深度学习 交叉验证 医学 计算机科学 核医学 放射科
作者
Rongli Zhang,Lun M. Wong,Tiffany Y. So,Zongyou Cai,Qiao Deng,Yip Man Tsang,Qi Yong H. Ai,Ann D. King
出处
期刊:Oral Oncology [Elsevier BV]
卷期号:152: 106796-106796 被引量:2
标识
DOI:10.1016/j.oraloncology.2024.106796
摘要

Parotid gland tumors (PGTs) often occur as incidental findings on magnetic resonance images (MRI) that may be overlooked. This study aimed to construct and validate a deep learning model to automatically identify parotid glands (PGs) with a PGT from normal PGs, and in those with a PGT to segment the tumor. The nnUNet combined with a PG-specific post-processing procedure was used to develop the deep learning model trained on T1-weighed images (T1WI) in 311 patients (180 PGs with tumors and 442 normal PGs) and fat-suppressed (FS)-T2WI in 257 patients (125 PGs with tumors and 389 normal PGs), for detecting and segmenting PGTs with five-fold cross-validation. Additional validation set separated by time, comprising T1WI in 34 and FS-T2WI in 41 patients, was used to validate the model performance. To identify PGs with tumors from normal PGs, using combined T1WI and FS-T2WI, the deep learning model achieved an accuracy, sensitivity and specificity of 98.2% (497/506), 100% (119/119) and 97.7% (378/387), respectively, in the cross-validation set and 98.5% (67/68), 100% (20/20) and 97.9% (47/48), respectively, in the validation set. For patients with PGTs, automatic segmentation of PGTs on T1WI and FS-T2WI achieved mean dice coefficients of 86.1% and 84.2%, respectively, in the cross-validation set, and of 85.9% and 81.0%, respectively, in the validation set. The proposed deep learning model may assist the detection and segmentation of PGTs and, by acting as a second pair of eyes, ensure that incidentally detected PGTs on MRI are not missed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕新完成签到,获得积分10
1秒前
1秒前
馆长举报研友_8KAzAn求助涉嫌违规
1秒前
幽默发卡完成签到,获得积分10
1秒前
zhangyulong完成签到,获得积分10
2秒前
Lucas应助JiaoJiao采纳,获得10
3秒前
sjj完成签到,获得积分10
4秒前
4秒前
bensonyang1013完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
沉默是金发布了新的文献求助10
7秒前
8秒前
Owen应助uromaster采纳,获得10
9秒前
凶狠的书白完成签到,获得积分10
10秒前
Ava应助云起龙都采纳,获得10
11秒前
12秒前
香蕉觅云应助Throb采纳,获得10
14秒前
linhappy完成签到,获得积分20
14秒前
帅气溪流完成签到,获得积分20
15秒前
唐泽雪穗发布了新的文献求助30
18秒前
蓝天应助李拾舟采纳,获得10
18秒前
19秒前
linhappy发布了新的文献求助10
19秒前
Night完成签到,获得积分10
20秒前
不想干活应助bnvgx采纳,获得10
20秒前
潇涯完成签到,获得积分10
21秒前
21秒前
23秒前
24秒前
ddddyyyyy完成签到,获得积分20
26秒前
26秒前
26秒前
27秒前
27秒前
yy完成签到,获得积分10
29秒前
lele发布了新的文献求助10
29秒前
uromaster发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537931
求助须知:如何正确求助?哪些是违规求助? 3972654
关于积分的说明 12306475
捐赠科研通 3639434
什么是DOI,文献DOI怎么找? 2003881
邀请新用户注册赠送积分活动 1039207
科研通“疑难数据库(出版商)”最低求助积分说明 928594